
1248 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 5, MAY 2019

Double-Bit Quantization and Index Hashing for
Nearest Neighbor Search

Hongtao Xie , Zhendong Mao , Yongdong Zhang , Senior Member, IEEE, Han Deng,
Chenggang Yan , and Zhineng Chen

Abstract—As binary code is storage efficient and fast to compute,
it has become a trend to compact real-valued data to binary codes
for the nearest neighbors (NN) search in a large-scale database.
However, the use of binary code for the NN search leads to low
retrieval accuracy. To increase the discriminability of the binary
codes of existing hash functions, in this paper, we propose a
framework of double-bit quantization and index hashing for an
effective NN search. The main contributions of our framework are:
first, a novel double-bit quantization (DBQ) is designed to assign
more bits to each dimension for higher retrieval accuracy; second,
a double-bit index hashing (DBIH) is presented to efficiently
index binary codes generated by DBQ; and third, a weighted
distance measurement for DBQ binary codes is put forward to
re-rank the search results from DBIH. The empirical results on
three benchmark databases demonstrate the superiority of our
framework over existing approaches in terms of both retrieval
accuracy and query efficiency. Specifically, we observe an absolute
improvement on precision of 10%–25% in most cases and the
query speed increases over 30 times compared to traditional binary
embedding methods and linear scan, respectively.

Index Terms—Nearest neighbor search, double-bit quantization,
double-bit index hashing, weighted distance measurement, binary
embedding.

I. INTRODUCTION

N EAREST neighbor (NN) search has been one of the key
problems of visual applications including image retrieval

[1]–[4], object recognition [5]–[8] and copy detection [9]–[12].

Manuscript received September 6, 2017; revised January 26, 2018, June
3, 2018, and August 12, 2018; accepted September 10, 2018. Date of pub-
lication October 1, 2018; date of current version April 23, 2019. This work
was supported in part by the National Key Research and Development Pro-
gram of China (2017YFC0820600); in part by the National Defense Science
and Technology Fund for Distinguished Young Scholars under Grant 2017-
JCJQ-ZQ-022; in part by the National Nature Science Foundation of China
under Grants 61525206, 61771468, 61772526, and 61502477; and in part by
the Youth Innovation Promotion Association Chinese Academy of Sciences
(2017209). The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Benoit Huet. (Corresponding author:
Zhendong Mao.)

H. Xie, Z. Mao, and Y. Zhang are with the School of Information Science and
Technology, University of Science and Technology of China, Hefei 230026,
China (e-mail:, htxie@ustc.edu.cn; maozhendong2008@gmail.com; zhyd73@
ustc.edu.cn).

H. Deng is with the Institute of Information Engineering, Chinese Academy
of Sciences, Beijing 100093, China (e-mail:,denghan@iie.ac.cn).

C. Yan is with the Institute of Information and Control, Hangzhou Dianzi
University, Hangzhou 310000, China (e-mail:,cgyan@hdu.edu.cn).

Z. Chen is with the Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail:,zhineng.chen@ia.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2018.2872898

Further, NN search is irrelevant to feature extraction method
exploited, while the latest deep learning based methods [13]–
[15] gradually replace the traditional feature extraction meth-
ods, such as SIFT [16], [17] and GIST [18], [19]. NN search
consists in finding the closest matches of a given query signa-
ture in large amounts of reference signatures [20]–[22]. When
searching similar signatures in a large-scale database composed
of floating-point values, it usually computes the Euclidean dis-
tance between the query and all the reference signatures, which
is quite costly. As a consequence, handling large quantities of
data has become a challenge on its own.

Generally, the problem can be solved from two aspects: us-
ing binary codes to represent image signatures, which reduces
the matching time between signatures and saves the memory
storage; constructing index structure to organize the compact
signatures to improve the retrieval efficiency. Although a lot
of existing works concentrate on binary embedding and binary
code indexing, there still exist some issues on both of them for
NN search as follows:

1) Binary embedding leads to low retrieval accuracy. Bi-
nary codes take up less storage and require only a small
amount of machine instructions when comparing for simi-
larities. Thus, the use of binary code can greatly accelerate
the nearest neighbor search and signature matching. Even
with the most time-consuming linear search method, mil-
lions of binary codes can be compared to a query in less
than a second [32]. Despite of its remarkable advantages,
the drawbacks are not ignorable: on one hand, mapping
floating-point data to binary codes results in obvious loss
of information, as a single floating-point value is usually
converted into one-bit binary code (0 or 1); on the other
hand, it also evidently reduces the distinctiveness between
different signatures [43].

2) Binary code indexing cannot handle long codes effec-
tively. Unlike real-valued signatures, binary codes can-
not be directly stored or organized by traditional index
structures, such as tree-based index [23]–[26] and locality
sensitive hashing (LSH) [27]–[30], to guarantee retrieval
efficiency. But binary code itself can be directly used as
index address to create a hash table to be indexed, which
increases the search speed compared to the linear scan.
However, the use of binary code as a direct hash index
is not necessarily effective in many cases, as it needs to
search all the buckets in hamming balls around the query
in order to find the nearest neighbors in Hamming space.

1520-9210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6249-5315
https://orcid.org/0000-0001-5739-8126
https://orcid.org/0000-0002-1151-1792
https://orcid.org/0000-0003-1204-0512
mailto:htxie@ustc.edu.cn
mailto:maozhendong2008@gmail.com
mailto:zhyd73@ustc.edu.cn
mailto:zhyd73@ustc.edu.cn
mailto:denghan@iie.ac.cn
mailto:cgyan@hdu.edu.cn
mailto:zhineng.chen@ia.ac.cn

XIE et al.: DOUBLE-BIT QUANTIZATION AND INDEX HASHING FOR NN SEARCH 1249

Fig. 1. Framework of the proposed double-bit quantization and index hash-
ing method. Each signature is first projected into B-dimensional real-valued
intermediate data. Then double-bit quantization converts intermediate data into
2B-bit binary codes. Next, DBIH selects the top-k nearest neighbors in ham-
ming space as candidates. Finally, the weighted distance measurement is used
to re-rank candidates to get final results.

Indeed, the number of hash buckets grows exponentially
with the search radius. Even if the radius of the search
is small, the number of buckets to be checked is usu-
ally greater than the number of signatures in the database
[32]. So the query efficiency is much lower than that of
linear scan. In general, when the binary code is longer
than 32-bit, the query efficiency is lower than linear scan.
However, the binary signatures are usually much longer
than 32 bits long [32]. Thus, how to deal with long codes
to build binary code index remains a key problem for NN
search.

Building on the previous analysis, the framework of double-
bit quantization and index hashing (DBQ-IH) is proposed in
this paper, as demonstrated in Fig. 1. Firstly, all the signatures
in database are mapped to binary codes by double-bit quantiza-
tion (DBQ), to increase the discriminability of the binary codes
of existing hash functions. Then the double-bit index hashing
(DBIH) is built to organize those binary codes. For a given
query, it will be mapped to DBQ binary code in the same way,
and its real-valued data is preserved as well. Next, the results
of top-k similar binary codes in hamming space are selected
from DBIH. In the following, the weighted distance measure-
ment (WDM) is applied to the results for re-ranking. Finally,
the nearest neighbors are achieved through the above processes.

Summarily, the main contributions of the framework are:
� Double-bit quantization. We map each dimension of data to

double-bit rather than one-bit for higher retrieval accuracy.
Meanwhile, the hamming distances between binary codes
based on DBQ are assigned different weights according to
their spatial relationship.

� Double-bit index hashing. A new binary code indexing
is brought up based on multi-index hashing (MIH) [32]
for DBQ binary codes to speed up NN search, without
changing the structure of the original MIH.

� Weighted distance measurement. WDM is proposed to
compute the distance between reference DBQ binary
codes and uncompressed query signatures to re-rank the

nearest neighbors from DBIH for higher accuracy, as un-
compressed query signatures have more discriminability
than binary codes.

For experimental comparisons, the proposed framework is
evaluated on three benchmark datasets, including the SIFT [16],
[17] signatures and GIST [18], [19] signatures in BIGANN [11]
and GIST signatures in Caltech101 [33]. It demonstrates that the
proposed DBQ and WDM consistently and evidently improve
the retrieval accuracy over the traditional binary embedding
methods. Meanwhile, DBIH obviously accelerates NN search
compared to linear search. In some cases, DBQ-IH can increase
the precision on the order of 10%∼25% against original methods
and accelerate the NN search by over 30 times compared to the
exhaustive linear scan.

The rest of the paper is organized as follows. Section II gives
a review of related works. In Section III, we elaborate the ap-
proaches of the framework DBQ-IH. Section IV presents the ex-
perimental results on BIGANN and Caltech101 for NN search.
Finally, conclusions are given in Section V.

II. RELATED WORK

In this section, we first introduce the binary embedding meth-
ods. Then, the binary code indexes are briefly described. Finally,
the weighted distance algorithms are analyzed in detail.

A. Binary Embedding

The prominent advantages of binary codes lead to the explo-
sion in binary embedding techniques. Binary embedding aims
to transform real-valued signatures into binary codes, while it
guarantees that similar signatures are mapped into the same
binary codes with a high probability. There are various exist-
ing binary embedding methods. Principal component analysis
(PCA) [33], [34] is a statistical procedure that uses an orthog-
onal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated
variables, to reduce the dimension of correlated coefficients.
The locality sensitive hashing (LSH) [31], [36], [37] measures
the similarity between two vectors using the inner product op-
eration. The hashing function of LSH projects the raw features
into hyper-planes, and the coefficients of which are drawn from
the multivariate normal distribution. The spectral hashing (SH)
[38], [39] finds the best codes for given feature vectors by solv-
ing the optimization problem, which is expressed by the sum
of weighted differences between raw feature vectors. The key
idea of iterative quantization (ITQ) [40], [41] simply rotates the
data to minimize the error that is defined by the difference be-
tween the binary hashing code and the low dimensional vector
acquired in dimensionality reduction.

In general, the binary embedding algorithms can be decom-
posed into two steps: 1) The signatures are first embedded
in an intermediate space and 2) Thresholding is performed
in intermediate space to obtain binary outputs. In order to
express the meaning of binary embedding clearly, we intro-
duce a set of notations. Let s be an image signature with
K dimensions in space Ω and let hk be a binary embedding
function, i.e., hk : Ω → {0, 1}. A set H = {hk , k = 1 . . . K}

1250 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 5, MAY 2019

of K functions define a multidimensional embedding function
h : Ω → {0, 1}K with h(s) = [h1(s) hK (s)]′. Note that real-
valued signatures are not directly converted into binary codes
via binary embedding. For LSH, SH, PCAE and PCAE-ITQ,
binary embedding function hk can be decomposed as follows:

hk (s) = qk [gk (s)] , (1)

where gk (s) : Ω → R (the intermediated space) is projection
function and qk (s) : R → {0, 1} is quantization function. That
is, binary embedding firstly projects image signature s to real-
valued multidimensional vector g(s) = [gk (s), k = 1 . . . K]′,
which is an extremely good approximation to the original sig-
nature. Then, the real-valued data will be quantized into binary
codes by thresholding (0 is often set as the threshold). Namely, if
gi(s) > 0, si is mapped to 1. Otherwise, si will be mapped to 0.
Thus, traditional quantization function just roughly divides each
dimension into two parts, decoded as 0 or 1, which considerably
reduces the discriminability [43].

Up to now, many binary embedding methods [47]–[55] have
been proposed. The basic idea of MH [47] is to encode each pro-
jected dimension with multiple bits of natural binary code, based
on which the Manhattan distance between points in the ham-
ming space is calculated. The method in [48] quantizes each
projected dimension into double bits with adaptively learned
thresholds. Neighborhood Preserving Quantization (NPQ) [49]
assigns multiple bits per hyper plane based upon adaptively
learned thresholds. Variable Bit Quantization (VBQ) [50] pro-
vides a data driven non-uniform bit allocation across hyper
planes. Zhu et al. [51] propose a novel approach based on [48],
which can efficiently handle the situation under non-Gaussian
distribution input. Xiong et al. [52] provide a novel adaptive
quantization (AQ) strategy that adaptively assigns varying num-
bers of bits to different hyper planes according to their informa-
tion content. Hamming Compatible Quantization (HCQ) [53]
preserves the capability of similarity metric between Euclidean
space and Hamming space by utilizing the neighborhood struc-
ture of raw data. Those hashing methods use supervised learning
to get higher accuracy, which bring extra time overhead.

B. Binary Code Indexing

Linear search [41] is an intuitive and typical exact search
method for binary codes. Given a query, brute-force match-
ing is performed to find the nearest neighbors. However, us-
ing linear search for matching becomes a bottleneck for large
datasets [43]. Therefore, attention has been paid to the hierar-
chical clustering trees (HCT) [42] for higher efficiency. HCT
selects cluster centers randomly and builds indexes with the en-
tire binary codes. However, this degrades search performance
when code gets longer. To deal with long codes, M. Nououzi
et al. propose the multi-index hashing method (MIH) [32]. The
main idea is to divide the long code into several shorter codes
and use these segments as address to build multiple hash tables.
To save more memory usage and get higher search efficiency,
the inverted multi-index structure [1] is designed by taking the
code distributions among different bits into account for index
construction. Among them, the notion of MIH is widely used

Fig. 2. Multi-index hashing.

in many methods for indexing binary codes, as it divides long
codes into substrings and builds multiple hash tables, which
dramatically accelerates the retrieval efficiency.

Supposing we have a dataset of N binary codes
{p1 , p2 , . . . pN }, and each of them is B-bit long. When a bi-
nary code is used directly as an index value, the run-time of
NN search is determined by the number of hash buckets to be
checked, which is

∑R
i=0 Ci

B in total, where R stands for the
hamming distance. Thus, the size of the Hamming space to be
searched increases exponentially as the hamming distance in-
creases. Therefore, the number of hash buckets to be examined
even greater than the size of the database in many cases. In MIH,
as demonstrated in Fig. 2, each B-bit binary code is divided into
m disjoint binary substrings, the length of which is b = B/m.
Then it inserts each substring as an index into m different hash
tables. Given a query vector, a hash bucket close to the query in
at least one such hash table is considered a neighbor candidate,
that is

∥
∥qk − pk

i

∥
∥ ≤ R/m, (2)

where k means the index of the segment of the origin binary
code. As a result, the number of hash buckets to be examined
decreases to

∑m
k=1

∑R/m
i=0 Ci

b . Then, the entire binary code is
used to check the validity of the candidates to exclude signatures
that are not nearest neighbors. Finally, the obtained results are
the exact nearest neighbors of the query in Hamming space.

C. Weighted Distance

Since binary representation leads to the loss of information
[46], weighted distance is proposed to addresses this concern.
In [44], the authors attempt to weight the hamming distance
of local signatures for image matching. In [45], two weights
are assigned to each hash bit and a score function is defined to
measure the similarity between binary signatures in developing
a ranking algorithm. To compute the distance between different
spaces, Albert et al. propose the asymmetric distance algorithm
[44], as the distance is calculated between Hamming space and
Euclidean space. They note that the compressing query signature
is not necessary when it comes to NN search. In practice, the
memory storage of a single non-binary signature is negligible.
In addition, the distance between the original signature and the
compressed signature can be efficiently calculated through the
lookup tables. The main advantage of asymmetric algorithms

XIE et al.: DOUBLE-BIT QUANTIZATION AND INDEX HASHING FOR NN SEARCH 1251

is that they can achieve higher search accuracy as they use the
more accurate position information of the query.

In [44], an algorithm for asymmetric distance based on the
expected value is proposed, which is defined as:

dE (x, y) =
∑

k

d(gk (x) , E[gk (u) |hk (u) = hk (y)]) (3)

where d(.) is the Euclidean distance, and E means the expec-
tation value. dE is simply computed as the Euclidean distance
between the query and the corresponding expected value of the
intermediated data gk (u), such that hk (u) = hk (y). As the dis-
tance can be calculated through pre-computed look-up tables,
the increase of time complexity is negligible.

III. THE PROPOSED METHOD

In this section, we start with a general overview of DBQ-IH.
Then, the novel DBQ, DBIH and WDM are precisely described.

A. Overview

The framework of DBQ-IH is a binary based system for
fast large-scale nearest neighbor search. After feature extrac-
tion process, binary embedding methods are used to map the
floating-point signatures to binary codes for higher retrieval ef-
ficiency and less memory storage. Instead of utilizing traditional
quantization, we use double-bit quantization to convert the in-
termediate data in Euclidean space to binary codes for more
discriminative binary signatures. Then double-bit index hash-
ing is designed to fit DBQ binary codes. DBIH creates multiple
index hash tables for each segment of binary codes. For a given
query, we not only convert it to binary code, but also preserve
its original signature. In this way, more information of the query
can be utilized to improve the retrieval accuracy by re-ranking
the results from DBIH.

Therefore, the whole framework is divided into three parts to
be introduced. The first is the method of double-bit quantization,
followed by the double-bit index hashing, and the weighted
distance measurement is detailed at last.

B. Double-Bit Quantization

In the previous section, it elaborates that binary embedding
methods greatly reduce the discriminability of original signa-
tures. To achieve higher accuracy, most of related works con-
centrate on improving the performance of projection functions
gk . Instead, we propose a DBQ method to assign double-bit to
each dimension of the intermediated data. The steps of DBQ are
summarized below:

1) Signature projection and normalization. For a given sig-
nature x with K dimensions, we use a multidimensional
projection function g(s) = [gk (s), k = 1 . . . K]′, such as
locality sensitive hashing [27], principal component anal-
ysis [35], spectral hashing [38], PCA-RR [35] and itera-
tive quantization [40], to map original signature x to real-
valued vector g(x) (the intermediated data). To enhance
the efficiency of comparisons, the vector is normalized by
its l1 norms N for each dimension and the normalized

Fig. 3. Encoding signature. Each dimension is divided into four parts by the
sign and two medians.

intermediated data l(x) = [lk (x), k = 1 . . . K]′ is ob-
tained by

li(s) = N [gi(s)]. i = 1 . . . K (4)

2) Data partition. We divide the intermediate data of each
dimension into two categories according to the sign of the
corresponding element, after which we get the medians of
both categories for all the dimensions. The medians of the
negative and positive parts in dimension i are represented
symbolically by nmi and pmi , respectively. Based on the
sign and two medians, each element of the intermediated
vectors can be divided into four categories, as illustrated
in Fig. 3. Although it is simple, the partition scheme leads
to competitive results on a variety of binary embedding
methods.

3) Binary quantization. By original quantization function,
the positional relations of elements in each dimension
have only two cases: either on the same side or the op-
posite side. To increase the discrimination, we quantize
each dimension into double bits. In this way, the quanti-
zation method may adapt well to the four relations of the
elements in each dimension, as shown in Fig. 3. For the
ith dimension, the DBQ function is defined as:

DBQi(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

11, if li(s) ≥ pmi

10, if li(s) ≥ 0 and li(s) < pmi

01, if li(s) 〈0 and li(s)〉nmi

00, if li(s) ≤ nmi

(5)

Since intermediate data preserves good approximation to the
similarity of original signatures, it has a high probability to map
gi(x) and gi(y) to the same category, if x is the nearest neighbor
of y. Conversely, if signature x and y are far from each other,
gi(x) and gi(y) are more likely to be mapped far apart. Thus,
the quantization scheme can naturally preserve the similarity
between two signatures.

As the intermediated data are generate by existing hash func-
tions, DBQ does not violate the design objectives of the data-
driven learning of hash functions. It also attempts to minimize
the Hamming distance between the similar training samples
while satisfying some constraints, such as bits should be evenly
distributed and bits must be independent.

1252 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 5, MAY 2019

TABLE I
WEIGHTED HAMMING DISTANCE BETWEEN EACH DIMENSION

For binary codes generated from DBQ, we cannot directly
calculate the hamming distance between them. There are two
reasons. Firstly, DBQ partitions each dimension of the interme-
diate data into four parts. Thus, the quantized signatures have
four kinds of spatial relationship which can be represented by 4
kinds of distances (0, 1, 2 and 3). However, the hamming dis-
tance between 2-bit binary codes only has three possible values
(0, 1 and 2). Secondly, XOR operation cannot describe the dis-
tance between DBQ binary codes accurately. For example, the
distance between 01 and 10 is 1, but the hamming distance be-
tween them is 2. Likewise, the distance between 00 and 11 is 3,
while the hamming distance is 2. Therefore, we propose a novel
weighted hamming distance to satisfy the distance computation
of DBQ binary codes, as shown in Table I.

For a given query, we first build several look-up tables, and
then the weighted hamming distance is calculated by search-
ing the pre-computed look-up tables. Note that, one dimension
refers to 2-bit binary code in the following description for clear
expression.

Assume x, q are the intermediate data of reference signa-
ture and query signature respectively. To calculate the weighted
hamming distance between x and q online, we should sum
up the distance of each dimension composed of 2 bits. Let
dk (DBQk (x),DBQk (q)) represents the weighted hamming
distance between the k-th dimension of x and q which is demon-
strated as follows:

Online, for the given query q, the following query-dependent
values are pre-computed and stored in look-up tables:

βx,q
k = dk (DBQk (x) ,DBQk (q)) . (6)

Assume dW H stands for the weighted hamming distance be-
tween x and q. By definition, we have

dW H (x, q) =
∑

k

βx,q
k . (7)

The cost of computing the values β is negligible with com-
parison to that of computing dW H (x, q) for a large number of
reference signatures x. The sum (7) can be computed very ef-
ficiently by grouping the dimensions. In our implementation,
we subdivide a vector into blocks of four dimensions (8-bit).
Assuming that the number of dimensions K is a multiple of 4,
to simplify the notation, we get:

dW H (x, q) =
K/4−1∑

k=0

j=4∑

j=1

βx,q
4k+j . (8)

Because the binary subvector [DQ4k (x),DQ4k+1(x)
DQ4k+2(x),DQ4k+3(x)], fits in one byte, each sum

∑j=4
j=1 βx,q

4k+j can only take 256 possible values. We can pre-
compute these 256 values and store them in a look-up table. In
total, we need to calculate K/4 tables for the computation.

Generally, the K/4 look-up tables will be cached as they only
need little storage space. Therefore, the weighted hamming dis-
tance can be simply calculated by adding values from each look-
up table together, rather than computing hamming distance for
each reference binary code via XOR operation.

C. Double-Bit Index Hashing

The structure of the double-bit index hashing is consistent
with MIH [32]. In order to improve the retrieval efficiency, the
binary codes are divided into several non-overlapping substrings
and multiple hash tables are built for each of them. For a given
query, it is also divided into several substrings in the same way.
Then each query substring gets the nearest neighbors from the
corresponding hash table. Next, we take these nearest neigh-
bors of substrings as candidates and compare the entire binary
codes with the query to remove any non-neighbors. Finally, the
obtained results are the nearest neighbors of the query.

As mentioned in Section II, MIH gets the nearest neighbors
by increasing the hamming distance and examining the corre-
sponding hash buckets. Given a query q, the address of hash
bucket is calculated by q XOR mask, where the number of 1
in mask represents the hamming distance. For example, assume
q equals to 00011011 and the expected hamming distance is 3.
Then we get one of the mask valued 00000111. The result of q
XOR mask is 00011100, which has the hamming distance of 3
for q.

However, the XOR operation is not suitable for the proposed
DBQ binary codes when performing NN search. Therefore, a
method is proposed to apply DBQ codes to binary code indexing
based on MIH, with the structure of MIH remains unchanged.
As shown in Table I, there are four kinds of binary codes in each
dimension, namely 00, 01, 10 and 11. They are corresponding
to 0, 1, 2 and 3 in decimal, respectively, and the range of the
distance for each kind of dimension is diverse. For example, 00
can be changed to 01, 10 and 11 by +1, +2 and +3 respec-
tively. For 10, the changes include +1, −1 and −2. Since the
different distances are equivalent to the weights in dimension,
the increase or decrease in value is considered as weighted ham-
ming distance (WHD). Therefore, in the process of increasing
the weighted hamming distance for NN search, each kind of
dimension has different cases, rather than a simple 0/1 bit flip.
So, we will discuss different situations separately. Specific steps
are as follows:

1) Resize the mask. The number of 1 in mask (in binary)
equals to the WHD. Further, the number of 1 in a dimen-
sion of mask represents the WHD of the corresponding
dimension. Assume that c1 is the number of 00 and 11,
and c2 is the number of 10 and 01. As the range of WHD of
11 and 00 is 3, and that of 01 and 10 is 2, the length of the
mask is set to be 3 × c1 + 2 × c2 , where c1 + c2 = b/2.
For example, as shown in Table II, the changes of the mask
00011011 are presented, where the WHD ranges from 0
to 10.

XIE et al.: DOUBLE-BIT QUANTIZATION AND INDEX HASHING FOR NN SEARCH 1253

TABLE II
THE CHANGES OF MASK FOR 8-BIT BINARY CODE 00011011 WHEN

INCREASING THE WEIGHTED HAMMING DISTANCE

TABLE III
THE CHANGES OF CORRESPONDING DIMENSION OF IN AND RN WHEN BINARY

CODE IS 00 OR 11. ‘+’ REPRESENTS THE CHANGE IN IN; ‘-’ REPRESENTS THE

CHANGE IN RN

TABLE IV
THE CHANGES OF CORRESPONDING DIMENSION OF IN AND RN WHEN BINARY

CODE IS 01 OR 10. ‘+’ REPRESENTS THE CHANGE IN IN; ‘-’ REPRESENTS THE

CHANGE IN RN

2) Transform the mask. When the WHD increases, the trans-
formation of mask for NN search is the same as MIH
except that the length of the mask is different. So, when
the WHD increases to R, the total number of the cases
of mask is CR

3×c1+2×c2 . In each case, there exist different
bit-wise flips in mask. We first initialize two variables IN
and RN to 0, which represent the numbers to be added and
subtracted to the query, respectively. Note that the two
variables have the same number of bits as the query, as
every two bits of them represents the WHD of the corre-
sponding dimension.

Table III and Table IV are presented to detail the changes of
IN and RN according to different mask and binary codes. For 00
(see Table III), only IN can be used, meaning a certain number
can be added to the dimension. While, 11 is just on the contrary.
As for 01 (see Table IV), the change ranges from −1 to + 2,
which indicates IN can be set as 01 and 10 or RN can be set
as 01 in corresponding dimension. However, when the WHD is
1, IN and RN can both be utilized. In this case, we use mask
to determine which variable to change. It requires that when
the dimension of mask equals 01, the corresponding dimension
of IN is set as 01, while RN is set as 01 when mask is 10. The
dimension of 10 works the same way. With the simple approach,
it guarantees that each transformation of mask corresponds to
only one situation, and takes into account all the cases at the
same time.

3) Examine the hash buckets. After the previous steps, the
address of the hash bucket to be examined is

address = query + IN − RN (9)

Subsequent search approaches are consistent with the MIH.
Here is an example, given the query 01001011, which is

8-bit code (4-dimension), and the length of the mask is set to
be 10-bit long. If the expected WHD is 4, the mask should
contain four bits valued 1. Assume the mask is 0010110100,
for the first dimension (from right to left), the corresponding
dimension of mask does not contain any 1, so there is no change
in IN or RN. For the second dimension of the query 00, the
mask (containing 3 bits in this dimension) has two bits valued
1, so IN = IN |00100000. For the third dimension of the query
10, the corresponding mask has one bit valued 1, then RN =
RN |00000100 For the fourth dimension 11 of the query, there
is one bit valued 1, so RN = RN |00000001. As a result, the
IN equals to 00100000 and RN equals to 00000101. Thus, the
address of hash bucket to be examined is 01100110, which has
the WHD of 4 for the query.

This method takes into account all cases of the WHD, and
each case appears only once. To fit DBQ binary codes, it con-
siders different combinations of mask and binary code to get
the address of hash buckets to be examined. As revealed in
the experiment results, DBIH remarkably increases the search
efficiency compared to the linear search.

D. Weighted Distance Measurement

Binary codes are storage efficient and fast to compute. Mil-
lions of binary codes can be compared to a query in less than a
second. However, the discrimination of the binary codes is still
limited, even though DBQ is employed. Thus, the weighted dis-
tance measurement is proposed to further increase the retrieval
accuracy.

As stated before, Albert et al. [44] propose an algorithm for
asymmetric distance based on expected value, which is defined
in equation (3). In this paper, we utilize the concept of [44] and
propose the WDM to satisfy DBQ binary codes. The calculation
of WDM computes the distance between uncompressed data and
the DBQ binary code, which is equivalent to assigning different
weights to each dimension according to the position of query. A
major benefit of the WDM is that it can achieve higher accuracy,
as it takes advantage of the precise information of the query.

For a given query, we firstly get the top-k closest sig-
natures in hamming space from DBIH. Then, these results
are considered as candidates to be re-ranked through WDM.
Note that, we replace hk with the proposed DBQk in equa-
tion (3). To get expected value for each dimension, a set of
signatures S{si, i = 1 . . . N} is firstly drawn randomly from
Ω. For each dimension k, we partition S into four clusters
Scu

k , cu = 00, 01, 10, 11. Each cluster contains signatures s such
that DBQk (s) = cu. Then, the expected value ck is computed
for each subsets offline:

ccu
k =

1
|Scu

k |
∑

v∈Sc u
k

gk (v). (10)

1254 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 5, MAY 2019

Fig. 4. Asymmetric distance.

For a given query x, the distance (see Fig. 4) is calculated
between uncompressed query and the expected value of cor-
responding dimension of DBQ binary code online, which is
defined as:

dE (x) =
√

∑

k

(gk (x) − c
DBQk (x)
k)

2
. (11)

It shows that the WDM takes full advantages of the non-
binarized signature, which keeps the information of the orig-
inal. For example, for i-th dimension of a given query q and
reference signature x, gi(q) locates in area1 and DBQi(x) is
mapped to area2. The weighted distance between them is the
Euclidean distance between gi(q) and the expected value of all
the intermediated data mapped to area2 in dimension i. Along
with the benefit of DBQ, the discriminability can be further
improved, due to different signatures possessing four possible
position relations through WDM.

In system implementation, to compare the performance ob-
jectively, we select top 100 nearest neighbors in Hamming space
as the candidates to evaluate the effect of WDM. Even though
extra floating-point multiplication is involved in the process, it
has negligible time consumption, as we calculate the weighted
distance only for limited number of signatures. In addition, the
calculation can be done by pre-computed look-up tables just as
the double-bit quantization.

IV. EXPERIMENTS

In this section, we show the performance of our proposed
method. We first introduce three famous datasets and evaluation
metrics used in the experiments. Then intensive comparisons
between the framework of DBQ-IH and traditional methods are
given.

A. Dataset and Evaluation Metrics

Three benchmark datasets are used to evaluate DBQ and
WDM, including 1M SIFT (128-d) and 1M GIST (960-d) sig-
natures from BIGANN dataset [11] and GIST (320-d) signatures
from Caltech101 dataset [33]. For DBIH evaluation, we use 1B
SIFT (128-d) features from BIGANN dataset, which consists of
three vector subsets: training set, database set and query set.

For experimental evaluation of DBQ, the precision and recall
are employed to measure the performance of our method. The
WDM is measured by precision. The precision and recall are

defined as follows:

precision =
count(relevant ∩ retrieved)

retrieved
(12)

recall =
count(relevant ∩ retrieved)

relevant
, (13)

where retrieved is the NN search results of our method, and rele-
vant is the linear search results in Euclidean space. We compare
the recall@10 and precision@1 of several similarity-preserving
binary embedding methods, namely, locality sensitive hashing
(LSH) [27], principal component analysis (PCA) [35], spec-
tral hashing (SH) [38], PCA-RR [35], and iterative quantization
(ITQ) [40], with DBQ and WDM.

For DBIH evaluation, the method is verified by query speed.
The run-time of proposed DBIH will be compared with linear
search, using the DBQ binary codes generated from LSH.

B. Results

Our proposed framework is a binary based large-scale near-
est neighbor search system. After the signatures are obtained by
various methods, binary embedding methods are utilized to con-
vert the floating-point signatures to binary codes, of which the
double-bit quantization method is employed. Next, the double-
bit index hashing creates a multiple index hashing tables to
obtain the nearest neighbors in the Hamming space. We use
the weighted distance measurement to re-rank the results from
DBIH for the final nearest neighbors. Therefore, our experi-
ments can be divided into the following three parts:

� Double-bit quantization. Comparing the retrieval precision
and recall of the traditional binary embedding methods
with the DBQ binary codes, on the baseline of the nearest
neighbors in Euclidean space.

� Double-bit index hashing. Comparing the query speed of
the linear scan with the DBIH in the dataset composed of
DBQ binary codes.

� Weighted distance measurement. Comparing the retrieval
precision of the results from DBIH with re-ranked results
through WDM, on the same baseline of double-bit quanti-
zation.

As we can see from the summary, the three-step experiments
are progressive layers in relationship. Since the experiments of
DBQ and WDM use the same measurements and baseline, the
settings for them are introduced together.

1) Double-Bit Quantization:
� Double-bit quantization VS original method
Each experiment has 1000 queries, in which precision and

recall are used as metrics. For the different binary embedding
methods in three different datasets, the results using DBQ are
better than original binary embedding methods.

To get the double-bit binary codes, the signatures in train-
ing set are mapped to the intermediate data, and the medians
are obtained according to the sign of each dimension. Then we
transform both reference signatures and query signatures to in-
termediate data in the same way as training set. Next, the data are
quantized into double-bit binary codes through DBQ. Finally,

XIE et al.: DOUBLE-BIT QUANTIZATION AND INDEX HASHING FOR NN SEARCH 1255

TABLE V
SUMMARY OF RESULTS (PERCENT) FOR BIGANN 1M SIFT DATASET. CODES ARE 32, 64, 128 OR 256 BITS LONG, OBTAINED BY ITQ, RR, SH, LSH OR PCA.

P@1 MEANS THE PRECISION@1, AND R@10 STANDS FOR THE RECALL@10. SB REPRESENTS THE SINGLE-BIT QUANTIZATION AND DB MEANS OUR

DOUBLE-BIT QUANTIZATION

TABLE VI
SUMMARY OF RESULTS (PERCENT) FOR CALTECH101 GIST DATASET. CODES ARE 64, 128, 256 OR 320 BITS LONG, OBTAINED BY ITQ, RR, SH, LSH OR PCA.

P@1 MEANS THE PRECISION@1, AND R@10 STANDS FOR THE RECALL@10. SB REPRESENTS THE SINGLE-BIT QUANTIZATION AND DB MEANS OUR

DOUBLE-BIT QUANTIZATION

TABLE VII
SUMMARY OF RESULTS (PERCENT) FOR BIGANN 1M GIST DATASET. CODES ARE 64, 128, 256 OR 512 BITS LONG, OBTAINED BY ITQ, RR, SH OR LSH. P@1
MEANS THE PRECISION@1, AND R@10 STANDS FOR THE RECALL@10. SB REPRESENTS THE SINGLE-BIT QUANTIZATION AND DB MEANS OUR DOUBLE-BIT

QUANTIZATION

the weighted hamming distance is calculated for each binary
code.

Table V, VI and VII show the comparison results on three
datasets of original binary embedding algorithms and those with
DBQ. The results demonstrate that DBQ consistently improves
the retrieval accuracy over the original binary embedding algo-
rithms and is independent of the datasets, the descriptors and
the binary embedding methods. Here are two examples: on Cal-
tech101 (Table VI), we observe a relative improvement on recall
of 80.2% at 256-bit when using RR-PCA; on BIGANN, when
SH is employed we can observe a relative improvement of pre-
cision of 42.3% (Table V) at 128 bits. The comparison results
show that all methods have obvious improvement with DBQ.
This can be explained by two primary factors.

On one hand, double-bit quantization preserves more infor-
mation of original signatures. The average discrimination per bit
declines as the dimensionality increases. Here is an example, for
ITQ, when the dimensionality k is 128, the precision is 14.2%
on Calteach101. Given the same circumstances except for the

dimension being 2k, the precision is 16.9% which only has 19%
relative improvement. In theory, 2k-bit binary code with DBQ
doubles the retrieval accuracy of k-bit binary code with one-bit
quantization. That is to say, when the dimension of binary codes
is both 2k, the discrimination of DBQ significantly outperforms
one-bit quantization.

On the other hand, weighted hamming distance has more
distinguishing ability. When one-bit quantization is used, the
hamming distance of each two-bit code has three possible values
(0, 1 and 2). But it has four possibilities (0, 1, 2 and 3) when
using DBQ. Thus, weighted hamming distance has a wider range
than original method. For example, assume the number of bit is
64, and then the range of hamming distance is 0 to 64. However,
the range of weighted hamming distance is 0 to 128, which is
twice of the former. As a consequence, DBQ obtains stronger
discrimination than traditional binary embedding methods.

� Double-bit quantization VS Manhattan hashing [47]
To verify the effectiveness of DBQ, Manhattan hashing (MH)

is compared. The basic idea of MH is to encode each projected

1256 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 5, MAY 2019

TABLE VIII
COMPARISON BETWEEN DOUBLE BIT QUANTIZATION AND MANHATTAN HASHING [47] (PERCENT) FOR BIGANN 1M SIFT DATASETS. CODES ARE 32, 64, 128 OR

256 BITS LONG, OBTAINED BY ITQ, RR, SH, LSH OR PCA. P@1 MEANS THE PRECISION@1, AND R@10 STANDS FOR THE RECALL@10. MH REPRESENTS

MANHATTAN HASHING AND DB MEANS OUR DOUBLE-BIT QUANTIZATION

dimension with multiple bits of natural binary code, based on
which the Manhattan distance between points in the hamming
space is calculated. In order to maintain consistency of the ex-
periments, the number of bit per dimension is set to be 2. The
dataset we use is BIGANN SIFT 1M. The experiment has 1000
queries, in which precision and recall are adopted as metrics. As
shown in Table VIII, DBQ outperforms MH in most of the cases
expect when the hashing method is LSH due to the randomness.

Note that NPQ has better performance than MH [49]. To our
knowledge, DBQ has the best accuracy on the three datasets at
present. For the reason of paper length, wo do not compare our
method with NPQ.

2) Double-Bit Index Hashing: Each experiment involves
10000 queries, and we report the average running time. When
the number of bits is 64, we divide the binary codes into 4 seg-
ments. The 128-bit long binary codes are divided to 8 segments.
The results illustrate that DBIH is remarkably faster compared
to the linear scan. Note that the linear scan speed relies heavily
on the memory cache. If there is less cache, linear scan will be
much slower [32].

DBIH only needs small number of hash buckets to be ex-
amined. Fig. 5(a) displays the average search radius required
for1000 queries on a dataset of 108 SIFT descriptors. As we
can see, the search radiuses are concentrated in the range of 2
to 4. Fig. 5(b) shows the relationship between the number of
examined hash buckets and the hamming distance on the same
dataset. For linear scan, each signature is equivalent to one hash
bucket. So it elaborates that DBIH requires a much smaller num-
ber of hash buckets than linear scan. Thus, DBIH is supposed
to perform more efficient NN search than linear scan.

Fig. 6 and Fig. 7 show the query speed of linear scan and
DBIH, for different k-NN problems and two different numbers
of bits: 64-bit and 128-bit. Although linear scan for binary code
is fast enough, DBIH performs several times faster. For example,
DBIH resolves the exact 100-NN in a 2 × 108 128-bit dataset
with about 0.71 s, 5 times faster than the linear scan (see Fig. 7).
Among them, 1-NN and 10-NN performance are even more
impressive. With 64-bit LSH codes, DBIH executes the 1-NN
search task over 30 times faster than the linear scan. The run-
time of the linear scan is independent of the expected number
of neighbors. However, the query time of DBIH depends on
this factor. In particular, as the number of expected neighbors
increases, the hamming radius of the NN search also increases,
meaning the longer query time for DBIH. Moreover, we notice

Fig. 5. (a) Shows the average search radius required according to the num-
ber of nearest neighbor expected. (b) Elaborates the relationship of hamming
distance and the number of hash buckets to be examined.

that the query speed of DBIH is sub-linear as the size of the
data set grows, since the query hamming radius is not directly
dependent on the size of the data set, in the case of a fixed
number of neighbors.

3) Weighted Distance Measurement: Even though the
WDM is used to re-rank the results from DBIH, we use the
datasets obtained by the experiments of DBQ for more convinc-
ing verification. Each experiment has 1000 queries, in which
precision is used as a metric. Because we only re-rank the re-
sults, the recall remains unchanged. For the different binary
embedding methods in three different datasets, the re-ranked
results are better than the results directly obtained.

Figs. 8, 9 and 10 indicate the precision before and after the use
of WDM for different binary embedding methods in different
datasets. Even though DBQ has improved the precision remark-
ably, the WDM can still further enhance the retrieval accuracy.
As we can see in CalTech101 (Fig. 9), the WDM doubles the
retrieval accuracy for most binary embedding methods. In SIFT
and GIST signature datasets from BIGANN, the performance

XIE et al.: DOUBLE-BIT QUANTIZATION AND INDEX HASHING FOR NN SEARCH 1257

Fig. 6. Run-times per query for double-bit index hashing with 1, 10 and 100 nearest neighbors, and a linear scan baseline on 5 × 108 64-bit binary codes
generated by LSH from SIFT in BIGANN.

Fig. 7. Run-times per query for double-bit index hashing with 1, 10 and 100 nearest neighbors, and a linear scan baseline on 5 × 108 128-bit binary codes
generated by LSH from SIFT in BIGANN.

Fig. 8. Influence to precision of the weighted distance measurement on the BIGANN dataset using 128-d sift descriptors through double-bit quantization and
different binary embedding methods, including ITQ, RR, PCA, LSH and SH. From left to right: 32-bit, 64-bit, 128-bit and 256-bit codes. DB represents the
double-bit quantization and DBWD means the double-bit quantization with weighted distance measurement.

Fig. 9. Influence to precision of the weighted distance measurement on the CalTeach101 dataset using 320-d gist descriptors through double-bit quantization
and different binary embedding methods, including ITQ, RR, PCA, LSH and SH. From left to right: 64-bit, 128-bit, 256-bit and 320-bit codes. DB represents the
double-bit quantization and DBWD means the double-bit quantization with weighted distance measurement.

is also excellent: in Fig. 8(c), the query accuracy is improved
by an average of 58.3%. We have noticed that when the num-
ber of bits is small, the effect of WDM is not obvious. As the
binary codes are obtained from DBQ, every two bits represents
just one dimension. However, the WDM is calculated by each
dimension. So the benefits of WDM will be limited when the
number of bits is small.

In summary, the empirical results on large-scale binary code
databases demonstrate the superiority of our framework over
existing approaches in terms of both retrieval accuracy and query
efficiency. We observe an absolute improvement on precision of
10%∼25% compared to traditional binary embedding methods
in most cases. Meanwhile, the query speed of our method is
increased over 30 times than linear scan.

1258 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 5, MAY 2019

Fig. 10. Influence to precision of the weighted distance measurement on the BIGANN dataset using 960-d gist descriptors through double-bit quantization and
different binary embedding methods, including ITQ, RR, LSH and SH. From left to right: 64-bit, 128-bit, 256-bit and 512-bit codes. DB represents the double-bit
quantization and DBWD means the double-bit quantization with weighted distance measurement.

Note that not all dimensions are equally informative and
important and quite likely that some might not require two
bits. In the design of DBQ, we have considered the scheme of
assigning different bits for each dimension. Actually, we have
assigned different bits for each dimension just on the basis of
the covariance of each dimension and got promising results.
However, we did not give the comparison results for the reason
of structure arrangement.

V. CONCLUSION

In this paper, we propose a novel framework double-bit quan-
tization and index hashing for fast large-scale nearest neighbor
search. On one hand, it takes advantages of both compressed
data and real-valued signatures for higher accuracy. On the other
hand, DBQ-IH utilizes the benefit of double-bit index hashing
to accelerate large-scale NN search.

To improve retrieval accuracy, we quantize each dimension
of intermediate data in the dataset into double-bit binary code.
Then double-bit index hashing is employed to organize the DBQ
binary codes for fast NN search. Finally, the results from DBIH
are re-ranked by weighted distance measurement to further im-
prove the retrieval accuracy.

Experimental results illustrate DBQ-IH can achieve an abso-
lute improvement on precision of 10%∼25% compared to the
original binary embedding methods. It indicates that double-bit
quantization and weighted distance measurement perform su-
perior results by assigning more weight to the signatures close
to query both in Hamming space and Euclidean space. At the
same time, our framework accelerates the query speed by over 30
times compared to linear scan. We believe the proposed DBQ-
IH can improve the retrieval accuracy and efficiency of many
nearest neighbor search applications. As not all dimensions are
equally informative and important and quite likely that some
might not require two bits, in the future we will study assign-
ing different bits for each dimension and designing consequent
indexing structure.

REFERENCES

[1] J. Song et al., “A distance computation free search scheme for binary
code databases,” IEEE Trans. Multimedia, vol. 18, no. 3, pp. 484–495,
Mar. 2016.

[2] H. Wang, L. Feng, J. Zhang, and Y. Liu, “Semantic discriminative metric
learning for image similarity measurement,” IEEE Trans. Multimedia,
vol. 18, no. 8, pp. 1579–1589, Aug. 2016.

[3] Y.-G. Jiang, J. Wang, X. Xue, and S.-F. Chang, “Query-adaptive im-
age search with hash codes,” IEEE Trans. Multimedia, vol. 15, no. 2,
pp. 442–453, Feb. 2013.

[4] S. Megrhi, W. Souidène, and A. Beghdadi, “Spatio-temporal SURF for
human action recognition,” in Proc. Adv. Multimedia Inf. Process., 2013,
pp. 375–385.

[5] H. Xie et al., “Efficient feature detection and effective post-verification
for large scale near-duplicate image search,” IEEE Trans. Multimedia,
vol. 13, no. 6, pp. 1319–1332, Dec. 2011.

[6] Y.-G. Jiang, J. Wang, Q. Wang, W. Liu, and C.-W. Ngo, “Hierarchical vi-
sualization of video search results for topic-based browsing,” IEEE Trans.
Multimedia, vol. 18, no. 11, pp. 2161–2170, Nov. 2016.

[7] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object
detection using deep neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 2155–2162.

[8] J. Revaud, M. Douze, C. Schmid, and H. Jégou, “Event retrieval in large
video collections with circulant temporal encoding,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2013, pp. 2459–2466.

[9] Y.-G. Jiang, M. Li, X. Wang, W. Liu, and X.-S. Hua, “DeepProduct: Mo-
bile product search with portable deep features,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 14, no. 2, pp. 50:1–50:18, 2018.

[10] H. Xie et al., “Effective and efficient image copy detection based on GPU,”
in Proc. Eur. Conf. Comput. Vis., 2010, pp. 338–349.

[11] H. Jegou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in one
billion vectors: Re-rank with source coding,” in Proc. Int. Conf. Acoust.,
Speech, Signal Process., 2011, pp. 861–864.

[12] H. Xie, D. Yang, N. Sun, Z. Chen, and Y. Zhang, “Automated pul-
monary nodule detection in CT images using deep convolutional neu-
ral networks,” Pattern Recognit., vol. 85, pp. 109–119, 2019. [Online].
Available: https://doi.org/10.1016/j.patcog.2018.07.031

[13] L. Herranz, S. Jiang, and X. Li, “Scene recognition with CNNs: Objects,
scales and dataset bias,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 571–579.

[14] A. A. Cruzroa et al., “A deep learning architecture for image represen-
tation, visual interpretability and automated basal-cell carcinoma cancer
detection,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assisted In-
tervention, 2013, pp. 403–410.

[15] C. Yan et al., “Supervised hash coding with deep neural network for en-
vironment perception of intelligent vehicles,” IEEE Trans. Intell. Transp.
Syst., vol. 19, no. 1, pp. 284–295, Jan. 2018.

[16] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, pp. 91–110, 2004.

[17] H. Xie et al., “Pairwise weak geometric consistency for large scale image
search,” in Proc. 1st ACM Int. Conf. Multimedia Retrieval, 2011, pp. 1–8.

[18] I. Yahiaoui, N. Herve, and N. Boujemaa, “Shape-based image retrieval
in botanical collections,” in Proc. Adv. Multimedia Inf. Process., 2006,
pp. 357–364.

[19] A. C. Murillo and J. Kosecka, “Experiments in place recognition using
gist panoramas,” in Proc. IEEE 12th Int. Conf. Comput. Vis. Workshops,
2009, pp. 2196–2203.

[20] T. Tuytelaars and C. Schmid, “Vector quantizing feature space with a
regular lattice,” in Proc. IEEE Int. Conf. Comput. Vis., 2007, pp. 1–8.

[21] Z. Lei, Z. Yongdong, H. Richang, and Q. Tian, “Full-space local topology
extraction for cross-modal retrieval,” IEEE Trans. Image Process., vol. 24,
no. 7, pp. 2212–2224, Jul. 2015.

[22] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[23] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

XIE et al.: DOUBLE-BIT QUANTIZATION AND INDEX HASHING FOR NN SEARCH 1259

[24] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984, pp. 47–57.

[25] N. Katayama and S. Satoh, “The SR-tree: An index structure for high-
dimensional nearest neighbor queries,” ACM SIGMOD Rec., vol. 26, no. 2,
pp. 369–380, 1997.

[26] P. Zezula et al., Similarity Search. New York, NY, USA: Springer, 2006.
[27] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards re-

moving the curse of dimensionality,” in Proc. 13th Annu. ACM Symp.
Theory Comput., 1998, pp. 604–613.

[28] M. Datar et al., “Locality-sensitive hashing scheme based on p-stable
distributions,” in Proc. 20th Annu. Symp. Comput. Geometry, 2004,
pp. 253–262.

[29] S. Kim and S. Choi, “Bilinear random projections for locality-sensitive
binary codes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 1338–1346.

[30] G. Ye, D. Liu, J. Wang, and S. Chang, “Large-scale video hashing
via structure learning,” in Proc. IEEE Int. Conf. Comput. Vis., 2013,
pp. 2272–2279.

[31] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: Self-tuning indexes for
similarity search,” in Proc. Int. Conf. World Wide Web, 2005, pp. 651–660.

[32] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast exact search in hamming
space with multi-index hashing,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 6, pp. 1107–1119, Jun. 2014.

[33] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental Bayesian approach tested on
101 object categories,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., vol. 106, no. 1, p. 178, 2004.

[34] L. I. Smith, “A tutorial on principal components analysis,” Inf. Fusion,
vol. 51, no. 3, pp. 219–226, 2002.

[35] J. Yang, D. Zhang, A. F. Frangi, and J.-Y. Yang, “Two-dimensional PCA: A
new approach to appearance-based face representation and recognition,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 1, pp. 131–137,
Jan. 2004.

[36] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from
shift-invariant kernels,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 1509–1517.

[37] M. Datar et al., “Locality sensitive hashing scheme based on p-stable
distributions,” in Proc. 20th Annu. Symp. Comput. Geometry, 2004,
pp. 253–262.

[38] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 282, no. 3, pp. 1753–1760, 2008.

[39] Y. Weiss, R. Fergus, and A. Torralba, “Multidimensional spectral hashing,”
in Proc. Eur. Conf. Comput. Vis., 2012, pp. 340–353.

[40] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean approach
to learning binary codes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2011, pp. 817–824.

[41] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2916–2929, Dec. 2013.

[42] M. Muja and D. G. Lowe, “Fast matching of binary features,” in Proc.
Comput. Robot Vis., 2012, pp. 404–410.

[43] C. C. Yan et al., “Fast approximate matching of binary codes with distinc-
tive bits,” Frontiers Comput. Sci., vol. 9, no. 5, pp. 741–750, 2015.

[44] G. Albert, P. Florent, G. Yunchao, and S. Lazebnik, “Asymmetric distances
for binary embeddings,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 1, pp. 33–47, Jan. 2014.

[45] X. J. Wang, L. Zhang, F. Jing, and W. Y. Ma, “AnnoSearch: Image auto-
annotation by search,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2006, pp. 1483–1490.

[46] X. Zhang, L. Zhang, and H. Y. Shum, “QsRank: Query-sensitive hash code
ranking for efficient ε-neighbor search,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2012, pp. 2058–2065.

[47] W. Kong, W. J. Li, and M. Guo, “Manhattan hashing for large-scale image
retrieval,” in Proc. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2012,
pp. 45–54.

[48] W. Kong, “Double-bit quantization for hashing,” in Proc. AAAI Conf. Artif.
Intell., 2013, pp. 137–138.

[49] S. Moran, V. Lavrenko, and M. Osborne, “Neighborhood preserving quan-
tization for LSH,” in Proc. ACM SIGIR Conf. Res. Develop. Inf. Retrieval,
2013, pp. 1009–1012.

[50] S. Moran, V. Lavrenko, and M. Osborne, “Variable bit quantization for
LSH,” in Proc. 51st Annu. Meeting Assoc. Comput. Linguistics, 2013,
pp. 753–758.

[51] H. Zhu, “K-means based double-bit quantization for hashing,” in Proc.
IEEE Symp. Comput. Intell. Multimedia, Signal Vis. Process., 2014,
pp. 1–5.

[52] C. Xiong, W. Chen, G. Chen, D. Johnson, and J. J. Corso, “Adaptive quan-
tization for hashing: An information-based approach to learning binary
codes,” in Proc. SIAM Int. Conf. Data Mining, 2014, pp. 172–180.

[53] Z. Wang et al., “Hamming compatible quantization for hashing,” in Proc.
Int. Joint Conf. Artif. Intell., 2015, pp. 2298–2304.

[54] X. Shen et al., “Multi-view latent hashing for efficient multimedia search,”
in Proc. ACM Int. Conf. Multimedia, 2015, pp. 831–834.

[55] X. Shen et al., “Semi-paired discrete hashing: Learning latent hash codes
for semi-paired cross-view retrieval,” IEEE Trans. Cybern., vol. 47, no. 12,
pp. 4275–4288, Dec. 2017.

Hongtao Xie received the Ph.D. degree in computer
application technology from the Institute of Com-
puting Technology, Chinese Academy of Sciences,
Beijing, China, in 2012. He is currently a Research
Professor with the School of Information Science and
Technology, University of Science and Technology
of China, Hefei, China. His research interests include
multimedia content analysis and retrieval, similarity
search, and parallel computing.

Zhendong Mao received the Ph.D. degree in com-
puter application technology from the Institute of
Computing Technology, Chinese Academy of Sci-
ences, Beijing, China, in 2014. His research interests
include the fields of multimedia, machine learning,
and artificial intelligence.

Yongdong Zhang (M’08–SM’13) received the Ph.D.
degree in electronic engineering from Tianjin Univer-
sity, Tianjin, China, in 2002. He is currently a Pro-
fessor with the School of Information Science and
Technology, University of Science and Technology
of China, Hefei, China. He has authored more than
100 refereed journal and conference papers. His re-
search interests include multimedia content analy-
sis and understanding, multimedia content security,
video encoding, and streaming media technology.

Prof. Zhang was the recipient of the Best Paper
Awards in PCM 2013, ICIMCS 2013, and ICME 2010, and the Best Paper
Candidate in ICME 2011. He serves as an Editorial Board Member of the
Multimedia Systems Journal and the IEEE TRANSACTIONS ON MULTIMEDIA.

Han Deng received the M.A.Eng. degree from the In-
stitute of Information Engineering, Chinese Academy
of Sciences, Beijing, China, in 2017. She is currently
with the ByteDance AI Lab., Beijing, China. Her re-
search interests include multimedia content retrieval,
similarity search, and semantic segmentation.

1260 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 5, MAY 2019

Chenggang Yan received the B.S. degree from
Shandong University, Jinan, China, in 2008, and
the Ph.D. degree from the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China, in 2013, both in computer science.

He is currently a Professor with Hangzhou Dianzi
University, Hangzhou, China. Before that, he was an
Assistant Research Fellow with Tsinghua University.
His research interests include machine learning, im-
age processing, computational biology, and compu-
tational photography. He has authored or co-authored

more than 30 refereed journal and conference papers. As a co-author, Prof. Yan
was the recipient of the Best Paper Awards in the International Conference on
Game Theory for Networks 2014, and SPIE/COS Photonics Asia Conference
9273 2014, and the Best Paper Candidate in the International Conference on
Multimedia and Expo 2011.

Zhineng Chen received the B.S. and M.S. de-
grees from the College of Information Engineering,
Xiangtan University, Xiangtan, China, in 2004 and
2007, respectively, and the Ph.D. degree from the In-
stitute of Computing Technology, Chinese Academy
of Sciences, Beijing, China, in 2011, all in computer
science. He is currently an Associate Professor with
the Institute of Automation, Chinese Academy of Sci-
ences. He was a Senior Research Associate with the
Department of Computer Science, City University of
Hong Kong, in 2012, and was an Assistant Professor

with the Institute of Automation, Chinese Academy of Sciences, from 2012
to 2014. His research interests include large-scale multimedia information re-
trieval, machine vision, and pattern recognition. He has authored or co-authored
more than 20 papers in prestigious multimedia and related conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

