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Adaptive Residual Networks for
High-Quality Image Restoration
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Abstract— Image restoration methods based on convolutional
neural networks have shown great success in the literature.
However, since most of networks are not deep enough, there is
still some room for the performance improvement. On the other
hand, though some models are deep and introduce shortcuts for
easy training, they ignore the importance of location and scaling
of different inputs within the shortcuts. As a result, existing net-
works can only handle one specific image restoration application.
To address such problems, we propose a novel adaptive residual
network (ARN) for high-quality image restoration in this paper.
Our ARN is a deep residual network, which is composed of
convolutional layers, parametric rectified linear unit layers, and
some adaptive shortcuts. We assign different scaling parameters
to different inputs of the shortcuts, where the scaling is considered
as part parameters of the ARN and trained adaptively according
to different applications. Due to the special construction of
ARN, it can solve many image restoration problems and have
superior performance. We demonstrate its capabilities with three
representative applications, including Gaussian image denoising,
single image super resolution, and JPEG image deblocking.
Experimental results prove that our model greatly outperforms
numerous state-of-the-art restoration methods in terms of both
peak signal-to-noise ratio and structure similarity index metrics,
e.g., it achieves 0.2–0.3 dB gain in average compared with
the second best method at a wide range of situations.

Index Terms— Adaptive residual network, image denoising,
image super resolution, JPEG image deblocking, high-quality.

I. INTRODUCTION

IMAGE restoration, a classical and fundamental prob-
lem, aims at recovering the latent clean image y from

its degraded observation x , which may be produced by
noise contamination introduced during the image acquisi-
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tion or transport over analog media. For the sake of sim-
plicity, we commonly assume the corruption factor to be a
linear operator A combined with an additive white Gaussian
noise (AWG) N of standard noise deviation. In other words,
the measurement could be formulated as x = Ay + N . One
intuitive way of image restoration is to obtain an estimate of
y by minimizing the objective function as follows.

ŷ = min
y

�x − Ay�2
2 . (1)

The analytical solution of Eq.(1) can be expressed as
ŷ = (AT A)−1 AT x . However, the solution exists only if A
is invertible, which causes the image restoration to be an
ill-posed problem.

To address this problem, traditional image restoration meth-
ods usually employ regularization techniques by adding some
constraints to derive the estimation in Eq.(1). As a basic
regularization theory, Tikhonov and Arsenin [1] first proposed
an image restoration method by adding a regularization term
as follows:

ŷ = min
y

�x − Ay�2
2 + γ ��y�2

p , (2)

where γ is the regularization term balancing the tradeoff
between the error and the smoothness of the data, � represents
the penalty term, and p is the norm of the penalty function.
Generally, p is usually set to 2 or 1, which represents the
classical L2 or L1 norm techniques used for image restoration.
Since L2 norm technique usually results in a smoothing effect
on the restored image [2], especially at the edge regions,
the majority traditional image restoration methods are based
on L1 norm regularization. The simplest form of penalty
term � in L1 norm regularization problem is � = I ,
which is the well-known least absolute shrinkage and selec-
tion operator (LASSO) method [3]. In addition, the penalty
term � can also be � = ∇, becoming the famous total
variation (TV) [2], [4] method, which is able to preserve the
edge information in the restored image. Furthermore, we can
also add more constraints in the objective function in Eq.(2),
such as the sparse representation methods [5]–[7] and low-
rank minimization methods [8], [9]. Based on the assumption
that each patch of an image can be accurately represented by
a few elements from a basis, the sparse model has achieved
a great success in image restoration [5]–[7]. Low-rank mini-
mization is another strategy to represent similar patches as a
matrix with each column being a stretched patch vector, and
exploit the low-rank prior of the matrix for image restoration.
Dong et al. [8] proposed a low-rank minimization approach
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Fig. 1. Comparisons of SRCNN and ARCNN. (a) Architecture of
SRCNN [10]. (b) Architecture of ARCNN [11].

based on nonlocal similarity and achieved highly competent
performance. Besides, a weighted nuclear norm minimiza-
tion (WNNM) [9] was also proposed by conducting weighted
singular value decomposition to the stacked matrix. Since the
singular values can be assigned different weights, WNNM
preserves much better local image structures, leading to supe-
rior performance in terms of both objective and subjective
criterions.

Recently, due to the immerse popularity of deep learning,
a lot of models using neural networks have shown great
potential in image restoration. The first successful attempt
should be considered as denoising auto-encoder (DA) [12],
which is actually a two-layer neural network that tries to
reconstruct the original input from a noisy version of it. Let
x be the corrupted input image vector with length d and y of
the same length be the corresponding estimated clean version.
DA could be formulated as:

y = σ(b2 + W2σ(b1 + W1x)), (3)

where σ(x) = (1 + ex p(−x))−1 is the sigmoid activation
function applied element-wise to vectors, W1 is a d � × d ∈ R

weight matrix with d � being the length of hidden represen-
tation, W2 = W T

1 , and bi (i = 1, 2) represents the biases
respectively. Instead of using such a two-layer architecture,
Burger et al. [13] put forward a new network to build the
connections between degraded images x and their correspond-
ing clean ones y with plain multi-layer perception (MLP).
The connections could be represented by a nonlinear function,
which can be written as

y = b3 + W3 tanh(b2 + W2 tanh(b1 + W1x)), (4)

where Wi (i = 1, 2, 3) is the weight matrix, bi (i = 1, 2, 3) is
the vector-valued bias, and tanh function operates component-
wise. Here W1 is a d � × d ∈ R matrix, W2 is d �� × d � ∈ R and
W3 is d × d �� ∈ R, with d � and d �� being the length of hidden
representations, respectively.

With the wide application of convolutional neural net-
works [14]–[17], more effective image restoration methods
have been put forward in recent years, among which the
most famous one is super-resolution convolutional neural net-
work (SRCNN) [10]. SRCNN is a three-layer (Namely, feature
extraction, non-linear mapping, and reconstruction layer) con-
volutional neural network for image super-resolution, in which
the filters of spatial size were 9×9, 1×1, and 5×5 respec-
tively, as can be seen in Fig. 1(a). The network can be
expressed as

y = b3 + W3 ∗ f (b2 + W2 ∗ f (b1 + W1 ∗ x)), (5)

where Wi (i = 1, 2, 3) is the weight matrix, bi (i = 1, 2, 3)
is the vector-valued bias, and f is the rectified linear unit
(ReLU, max(0, x)). Remarkably, “*” denotes the convolution
operation. W1 corresponds to n1 filters of support c × f1 × f1,
where c is the number of channels in the input image, f1 is
the spatial size of a filter. Similarly, W2 contains n2 filters of
size n1 × f2 × f2 and W3 has n3 filters of size n2 × f3 × f3.

Based on SRCNN, artifacts reduction convolutional neural
networks (ARCNN) [11] was also proposed for compression
artifacts reduction. As can be seen in Fig. 1(b), ARCNN
is actually a four-layer convolutional neural network, which
employs an additional feature enhancement layer, compared
to SRCNN, to improve the mapping accuracy.

Although these models based on neural networks have
obtained excellent restoration results, there are still some
shortcomings could be improved. For example, MLP is just a
plain fully connected neural network, and it does not contain
any convolutional layers. While SRCNN and ARCNN both
contain convolutional layers, they are only tasked with specific
applications and difficult to extend to others. What’s more,
these neural models are merely made up of one fully connected
network, without considering introducing shortcuts, which is
very useful and effective in high-level image processing, such
as image recognition.

Shortcut, or called skip connection, is firstly presented by
He et al. [18] for image recognition. In this case, shortcuts
are simply identity mapping, adding to the later layers. The
goal is to speed up the training process without increasing
the number of parameter or computational complexity. What
is more, because of such a useful skill, these models obtain
better performance.

Motivated by the observations above, in this paper, we pro-
pose a high-quality image restoration method by devising
an adaptive residual network (ARN) to build more precise
connections between the corrupted images and their corre-
sponding original ones. Firstly, we build a deep convolutional
neural network to map a degraded image to its latent high-
quality one via a supervised learning process. We utilize the
mean square error (MSE) loss between the predicted clean
image and the true original image to determine our ARN. The
most important step is that we put adaptive and appropriate
shortcuts to the deep networks. In our model, the short cuts
can change their scaling flowing to the next layers, other
than merely identity linear to connect two layers. Apparently,
the introduction of scaling flowing is the biggest difference
when comparing our shortcut to the shortcut in [18]. Our
shortcut could pass more detailed information flowing across
several layers without attenuation, fasten the convergence and
reduce the loss when training our ARN. Furthermore, such
a residual architecture is proved to be able to extract more
useful features from the input images, which is very effective
in restoring better details of high quality images. In detail,
appropriate layers of 3×3 convolutional layers could extract
enough features from the degraded images. We also add
the last 1×1 convolutional layer, which plays an important
role as well. It could strengthen the power of our network,
bringing about better performance. Last but not least, xavier
initialization [19], adaptive moment estimation (adam) [20]
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optimizer, parametric rectified linear unit (PReLU) [21], and
other training strategies are employed to speed up the con-
verging process and achieve global optimal values. Except the
architecture of neural network, the dataset for training also
plays an important role. In image restoration, there are some
recognized and public datasets for different applications, such
as BSD500 [22], 91images [7], set5 [23] and so on. These
training images are all high-quality without any noise or blur,
which is helpful to learn useful priors. For the sake of good
performance and fair comparison, we select the publicly well
known BSD500 [22], 91images [7] and set5 [23] as our
training dataset in this paper.

Overall, the main contributions of our work can be summa-
rized as follows:

1) We propose an adaptive residual network (ARN) for high-
quality image restoration. Our ARN builds very accurate map-
pings between the degraded images and their corresponding
clean ones. Solely due to the introduction of adaptive and
appropriate shortcuts, could our ARN give great performance
in image restoration.

2) Our ARN can handle many image restoration appli-
cations, such as Gaussian image denoising, single image
super resolution, image deblocking, and so on at the same
time. Compared to existing networks, which could only solve
one or two problems, our ARN are applicable in different
problems by just changing the corresponding training datasets.

3) Considering the difficulty of training deep networks,
we adopt some effective strategies, such as PReLU [21], xavier
initialization [19], adaptive moment estimation (adam) [20]
optimizer, and other training strategies to speed up the training
procedure and obtain global optimal values.

The remainder of this paper is organized as follows: In
Section II, we describe several related works about image
restoration. Section III introduces the details of our ARN
and makes some comparisons on various residual units and
network architectures. The analysis of scaling parameters
within the proposed shortcuts in different applications is
provided in Section IV. Experiments are brought in Section V,
showing great improvements of the proposed idea in Gaussian
image denoising, single image super resolution, and image
deblocking. Section VI concludes the paper with discussions
related to future work.

II. RELATED WORK

Existing image restoration approaches are usually based
on traditional algorithms and network-based models.
The former methods include image priors [24]–[27],
example-based [28]–[30], dictionary-based [6], [31],
transformed domain [32]–[34], and statistical natural models
[35]–[37] et al. However, the latter network-based methods
draw more attention and produce state-of-the-art performance.
We will analyze some representative methods for Gaussian
image denoising, single image super resolution and JPEG
image deblocking from the two aspects.

In Gaussian image denoising, the most famous method is
block matching and 3D filtering (BM3D) [25], which com-
bined nonlocal self-similarity with an enhanced sparse rep-
resentation in transformed domain. In addition, based on the

general prior knowledge that larger singular values of the patch
matrices of original image are more important than the smaller
ones, WNNM [9] achieved great success in image denoising.
From the view of deep learning, one early try was DA, which
could predict the uncorrupted data based on the corrupted data
point. Stacking these DAs to form a deep network by feeding
output of the previous layer to the current one as input was
the main idea in stacked denoising auto-encoder (SDA) [12].
Furthermore, Burger et al. [13] attempted to learn a mapping
from a noisy image to a noise-free one directly with MLP
applied to image patches. Jain and Seung [38] carried out the
first successful try of image denosing based on convolutional
neural network, which offered similar performance in the blind
denoising setting as compared to other techniques in the non-
blind setting. However, no matter using either fully plain
frameworks or convolutional architectures, the depth of these
networks are too shallow to extract enough useful information
for reconstructing high-quality images.

For image super-resolution, one famous benchmark is
anchored neighborhood regression (ANR) [28], which learned
sparse dictionaries and regressors anchored to the dictionary
atoms and precomputed the corresponding embedding matrix.
Similarly, simple functions (SF) [29] also provided state-of-
the-art quality performance. But it relied on clusters and
corresponding learned functions. To be specific, it split the
feature space into numerous subspaces and collected suffi-
cient training exemplars to learn simple regression functions.
Ingeniously, A+ [30], combining the advantages of ANR
and SF, built on the features and anchored regressors from
ANR but learned the regressors using full training material,
which is the same as SF. Hence, it obtained better quality and
lower time complexity. Resembling to the neighbor embedding
methods, jointly optimized regressors (JOR) [31] is another
effective and computationally efficient algorithm. It jointly
learned a fixed number of regressors, which could be selected
adaptively for the appropriate input image. Besides the above
mentioned classic conventional image super-resolution meth-
ods, the deep learning based methods are also shown great
potentials recently. As mentioned in Section I, the most famous
deep learning method is SRCNN [10]. It firstly utilized few
convolutional and other layers to learn the mappings from low-
resolution images to high-resolution ones. Though SRCNN
already achieved some pleasant results, it still has a lot of
room to improve the performance.

Referring to JPEG image deblocking, there are also numer-
ous methods, focusing on removing deblocking and ringing
artifacts caused by the lossy quantization of transform coef-
ficients. There are larger numbers of algorithms based on
filtering in the DCT-domain [33], [34], [39], [40]. Among
these approaches, Zhang’s method [34] reduced compression
artifacts by optimizing overlapped block transform coeffi-
cients, which were estimated from non-local blocks of original
images. Besides, network-based model also immersed recently.
ARCNN [11] mentioned in Section I showed great perfor-
mance by extracting features from large dataset. In spite of
some differences between ARCNN and SRCNN, as shown
in Fig. 1(a) and Fig. 1(b), the weaknesses of them are a little
alike.
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Fig. 2. Comparisons of residual units. (a) Residual unit in [18]. (b) Adaptive
residual unit (ARU).

In our work, we build adaptive residual network (ARN)
with changeable skip connections for image restoration. Such
a trainable residual architecture is useful to reconstruct more
vivid images. Namely, adaptive shortcuts are very helpful to
pass specific details from the original image to the end convo-
lutional layers without adding computational cost. Moreover,
we investigate the property of different residual units and
depth of neural networks, both of which are very important
to improve the performance of our model. In the end, we use
some common strategies to train our ARN to make it converge
faster and perform better.

III. PROPOSED ADAPTIVE RESIDUAL NETWORK (ARN)

In this section, we will first illustrate the details of our resid-
ual units including the interior structures and mathematical
expressions. Next, we will demonstrate the structure of our
network, containing the numerous layers of the network and
the channels of each layer. The following will be the loss
function employed. Finally, some useful techniques applied in
the training of ARN model are provided.

A. Adaptive Residual Units (ARU)

Generally, the deeper the network is, the more power it will
have [18], [41]. However it will be more difficult to train such
a deep network because of vanishing gradients [42]. Hence,
to address the degradation problem, He et al. [18] put forward
the residual learning framework.

As seen in Fig. 2(a), the residual building block is made of
two 3 × 3 convolutional layers, the corresponding ReLU, and
one identity skip connection. Here, x and y are the input and
output vectors of the layers considered. Formally, the building
block can de defined as:

y = F(x, Wi ) + x. (6)

Here F = W2σ(W1x) in which σ denotes ReLU [43].
Obviously, such shortcuts connections introduce neither extra
parameter nor computation complexity.

Similarly, our residual unit, as shown in Fig. 2(b), can be
formulized as:

y = βF(x, Wi ) + αxoriginal, (7)

where xoriginal indicates the original input vector, α and β
represent the scaling factors of different inputs. The initial
values of α and β are set to 0.5 and 0.25 based on experience.
Then the two variables would be optimized together with
the convolutional weights, biases, and other variables by
adam [20] method to make the network converge to an optimal
value.

It should be noted that the x in Fig. 2(a) and Fig. 2(b)
both represents the input of current layer, in other words, it is

the output of the adjacently previous layer. Therefore, such
input x will change when the network gets deeper. However,
xoriginal will always be the input degraded image without
altering. From Fig. 3, we could see there are six identity skip
connections between the input low-quality image and the final
output. And all the six xoriginal are the same input while x is
the output of previous ARU.

Comparing to the existing residual unit, our ARN block has
three differences. Firstly, rather than using ReLU activation
function, we use PReLU [21] for training, as can be seen
in Fig. 4. The distinction between ReLU and PReLU will
be demonstrated in the following sub-sections. Secondly, our
shortcut connects the original input with the following stacked
layers, rather than linking the outputs of the previous layers
to the current one. This matters a lot for reserving the useful
information of input. Thirdly, we introduce α and β to smartly
balance the importance between the original input and the
output of previous layer. In this paper, the scaling values of
α and β are considered as part of the weighting parameters
of the ARN model, and the optimal value can be obtained
during the training process. To be noticed, we also tried setting
the scaling parameter to be a constant value. But from the
experimental results and theoretical analysis, we find that
making the scaling parameter adaptive by the cases is very
beneficial.

B. Network Architecture

As can be seen in Fig.3, our ARN is made up of one
3×3 convolutional layer, six ARUs, and one 3×3 convo-
lutional layer sequentially. We usually put a PReLU layer
after the convolutional layer, which have been omitted in
the figure for simplicity, and the reason why we use PReLU
rather than ReLU will be illustrated in the training strategies
section. The first 3×3 convolutional layer is used to extract the
features from the input low-quality images. Then, the extracted
features will be sent to the six ARUs. After that, the last
3×3 convolutional layer works as reconstructing high-quality
images. The numbers after 3×3 in Fig.3 represent the output
channels of current layers. Each ARU has two 3×3 convolu-
tional layers, and for example, (64,128) in the 3rd ARU repre-
sents there are 64 channels in the first 3×3 convolutional layer
and 128 channels in the second 3×3 convolutional layer. Facts
proved that 3×3 convolutional layers [44] have sufficient
ability to extract good features as long as the network is deep
enough. Furthermore, they will produce fewer parameters than
larger convolutional kernels, which will reduce computation
complexity greatly.

Especially, the part that our ARN differs heavily from con-
ventional residual networks is the six ARUs. From Fig. 2(b),
we know that all the six ARU blocks introduce the original
input to the current layers, and the scaling parameters α and β
are decided by the network itself and specified applications.
What is the relationship between scaling and application can
be found in Section IV.

C. Loss Function

We adopt MSE, the most common method to measure
the differences between two images, as the loss function in
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Fig. 3. The architecture of our ARN. 3×3 denotes the filter size of convolutional layers. The numbers after 3×3 represent the output channels of current
layers. One ARU has two 3×3 convolutional layers, and for example, (64, 128) in the 3rd ARU represents there are 64 channels in the first layer and
128 channels in the second layer. Each PReLU after the convolutional layer has been omitted for limited space. In addition, the six identity shortcuts between
input and each ARU corresponds to the original input channels in Fig. 2(b).

our model. Learning the end-to-end function F from low-
quality images to its high-quality counterparts needs to esti-
mate the weights β represented by the convolutional kernels as
well as the scaling parameters of the shotcuts. This is achieved
by minimizing the MSE between the outputs of the network
and the original image. More specifically, given a collection
of n training image pairs xi , yi , where xi is a low-quality
image and yi is the high-quality version as the ground truth,
we minimize the objective function:

L(β) = M SE = 1

n

n∑

i=1

�F(xi , β) − yi�2
2 . (8)

We record peak signal-to-noise ratio (PSNR)(dB) values
on the testing set during training for different applications
from Fig. 5(a)-(c). It can be observed that at the beginning, all
the curve jitter heavily. But at last they converge to a straight
line slowly.

D. Training Strategies
Lots of successful approaches have been proposed

for training deep neural networks in the past few
years [19]–[21], [45], [46]. Based on those achievements,
in our work, as for activation, initialization, and optimization,
we apply PReLU, xavier initialization, and adam optimization
separately.

1) Parametric Rectified Linear Unit (PReLU): ReLU has
been a common activation function used in deep learning after
traditional sigmoid-like units. For ReLU, if the input is less
than zero, the result is zero, which is very helpful to generate
a sparse representation. For neural networks, the values of the
activation layers can be viewed as a sparse representation of
the input. Hence, ReLU can accelerate the process of network
convergence and achieve better solutions. This is why an
increasing number of researchers prefer to using ReLU other
than conventional sigmoids.

From the comparisons in Fig. 4, in the negative part, PReLU
introduces one learnable parameter. Obviously, it is a general
form of ReLU. As stated in [21], the slope a in PReLU is an
adaptively learned parameter that can offset the positive mean
of ReLU, making it a little symmetric. In addition, experiments
also prove that PReLU converges faster than ReLU and obtains
better performance. So, we apply PReLU in our ARN.

2) Xavier Initialization: When creating neural networks,
it is important for us to make choices for the initial weights
and biases, especially on the occasion where the networks
are very deep. In our model, we use the xavier [19] way
of setting our initial weights and biases to help our neural

Fig. 4. ReLU vs. PReLU.

networks learn faster. Xavier is to initialize the weights by
drawing them from a distribution with zero mean and a
specific variance. Glorot and Bengio [19] recommended using
the following variance:

V ar(W ) = 2

nin + nout
, (9)

where W is the initialization distribution for the neuron, nin is
the number of neurons feeding into it, and nout is the number
of neurons the result is fed to. The distribution used is typically
Gaussian or uniform.

Experimental results verify that xavier strategy is better
than the common prescription that chooses both the weights
and biases using independent Gaussian random variables,
normalized to have mean 0 and standard deviation 1.

3) Adam Optimization: Neural networks are often trained
stochastically, in other words, using a method where the
objective function changes at each iteration. By investigating
some most commonly used gradient descent optimization
algorithms [47]: stochastic gradient descent (SGD), momen-
tum, nesterov accelerated gradient, adagrad, adadelta, rmsprop,
and adam [20], we find that adam technique performs best in
image restoration among all the algorithms, which is closely
related to its computational principle. It computes a decayed
moving average of the gradient and squared gradient (first
and second moment estimates) at each time step. First, the first
order moment moving average coefficient is decayed over
time. Second, because the first and second order moment
estimates are initialized to zero, some bias-correction is used
to counteract the resulting bias towards zero. Thanks to
these desirable properties, adam works well in practice and
compares favorably to other adaptive learning algorithms.

IV. ANALYSIS OF SCALING PARAMETERS

WITHIN SHORTCUTS

Based on the adaptive shortcuts architecture, we trained
different models for the three representative image restoration
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Fig. 5. PSNR(dB) values over the testing set during training for various applications. (a) Gaussian image denoising. (b) Single image super-resolution.
(c) JPEG image deblocking.

Fig. 6. Adaptive α and β of different layers for various applications. (a) Gaussian image denoising. (b) Single image super-resolution. (c) JPEG image
deblocking.

applications: Gaussian image denoising, single image super-
resolution, and image deblocking via changing the correspond-
ing training and testing sets.

By observing the learned parameters α and β of differnt
layers, we could get the following conclusions.

As can be seen in Fig. 6 (a), for Gaussian image deoising,
in the superficial layers, α is very small while β is very
large. As the network becomes deeper, α increases very
slowly. At the same time, β decreases gradually. When noise
level σ gets larger, α and β both start at a medium value.
However, both α and β will reach unanimity at last layers.
From the variation trend, we know that in shallow layers,
the convolutional outputs play a more important role than
the original input, because of Gaussian noises. And the gap
will narrow when noise levels become larger. But at last, their
importance seems to be the same.

From Fig. 6 (b), we can see the adaptive situation for single
image super-resolution. Similarly, all αs start at a smaller
value while βs are larger. Also, αs fluctuate greatly but βs
change slowly. Likewise, αs and βs converge to a close value
at later layers. All of these indicate that in the first layers,
the extracted features are more important than the original
images. Nonetheless, in the last layers, they almost become
the same significance because of the more and more features.

The adaptive change trend for image deblocking is quite dif-
ferent from the case in image denoising and super-resolution,
as shown in Fig. 6 (c). On one hand, βs still decrease very
slowly. On the other hand, αs have a high fluctuation which
is hard to find the rules. What we only could get is that all αs
and βs converge to the same value at last, which also could
be found in the above two applications.

In conclusion, all the three applications emphasize the
importance of adaptive scaling between different layers and
the original input. The applications decide the starting and
ending values of αs and βs and the changing trends of them.
But there also exists a constant law that all αs and βs go to a
steady value around 0.1 at last. It seems to tell that different
image restorations still have something in common, which is
also the base of most methods.

V. EXPERIMENTS

In this section, we perform experiments on three representa-
tive image restoration tasks: Gaussian image denoising, single
image super-resolution, and image deblocking. By compar-
ing our ARN with several state-of-the-art image restoration
algorithms, we could see the huge advantage of our adaptive
residual model in terms of PSNR and structural similarity
index (SSIM) [48]. We only focus on the restoration of
luminance channel (in YCrCb space) in this paper. Given a
reference image f and a test image g, the SSIM can be defined
as the following:

SSI M( f, g) = l( f, g)c( f, g)s( f, g), (10)

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

l( f, g) = 2μ f μg + c1

μ2
f + μ2

g + c1

c( f, g) = 2σ f σg + c2

σ 2
f + σ 2

g + c2

s( f, g) = σ f g + c3

σ f σgc3
.

(11)
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Fig. 7. The testing set (gray-scale, 256×256), 15 images of which are widely used in image denoising.

TABLE I

PSNR (dB) RESULTS WITH DIFFERENT σ ON TESTING SET (SEE FIG. 7). THE BEST RESULT FOR EACH IMAGE IS HIGHLIGHTED

In Eq. (11), μ f , σ f , and σ 2
f represent the average, standard

deviation, and variance of image f , respectively, and the same
as μg , σg , and σ 2

g . In addition, σ f g means the covariance of

f and g, and ci (i = 1, 2, 3) is the positive constant used to
avoid a null denominator.

The implementations are all from the publicly available
codes provided by the authors.1 We use the deep learning
library Tensorflow on an NVIDIA GTX TITAN X GPU with
3072 CUDA cores and 12GB of RAM to implement all the
operations in our network.

A. Gaussian Image Denoising

The goal of image denoising is to recover the latent clean
image from its corrupted version. For better dealing with such
an ill-posed problem, we usually assume the corruption kernel
as additive white Gaussian noise N . So the noise-corrupted
version x could be formulated as x = y + N . We compare
our ARN with several state-of-the-art denoising methods,
including BM3D [25], EPLL [35], WNNM [9], MLP [13],
and PCLR [27].

1) Training Details: We use Berkeley Segmentation Dataset
BSD500 [22] as the training set and 15 widely used test images
as the testing set (It can be found in Fig. 7). For increasing the
training set, we segment these images to overlapping patches
of size 50×50 with stride of 10.

2) Quantitative Results: We compute PSNR and SSIM to
evaluate quantitatively the denoising results, which can be seen
in Table I and Table II. From the comparing results on noise
level σ = 25 and 50, we will have the following observations.
Firstly, ARN holds the overwhelming superiority on PSNR
than other state-of-the-art methods with the provided two noise

1The source code of our ARN will be available after this paper is published.

levels in average. Especially, the superiority over the second
best method reaches to 0.24 dB and 0.18 dB on σ = 25 and
50 respectively. It should be noticed that our method is always
the best, but the second best changes when noise level varies.
This reflects the robustness of ARN. Secondly, with regards
to each image, ARN still has absolute advantage on PSNR.
Among 15 images, ARN has the highest PSNR values on
almost all images regardless of the increase of noise variance.
Hence, no matter on the whole or individuals, our ARN both
shows the great preponderance than other compared methods
in terms of PSNR.

From Table II, it can be seen that ARN achieves signif-
icantly better SSIM indices than any other method. To be
specific, ARN exceeds the second best method 0.0084 and
0.0067 on noise level σ = 25 and 50 respectively. Similar
to the PSNR metric, under the metric of SSIM, our ARN
always shows the best performance while the other methods
shake when the noise level changes, which also claims the
robustness of ARN.

3) Visual Quality: In addition to the objective measurements
mentioned above, human subjective perceptivity is the ultimate
judge of the image quality, which is also crucial to evaluate a
denoising method.

To better show how much the high frequency information
can be recovered, we use the very common canny method
in MATLAB to perform edge detection and the results are
depicted in Fig. 8. We could easily find that our method could
retain the most precise high frequency information compared
to the original clean image.

For further demonstrating the effectiveness of ARN,
we show the visual comparisons from Fig. 9 to Fig. 10. On the
whole, we can see that BM3D, EPLL, WNNM, MLP, and
PCLR are all prone to over-smooth the images and lose some
details, while ARN performs the best. Because of the accurate
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TABLE II

SSIM (dB) RESULTS WITH DIFFERENT σ ON TESTING SET (SEE FIG. 7). THE BEST RESULT FOR EACH IMAGE IS HIGHLIGHTED

Fig. 8. Edge detection results on Cameraman with state-of-the-art methods (σ = 50).

mappings between the noisy images and the corresponding
clean ones, our ARN seems to keep a good balance between
noise removal and details preservation.

Particularly, from Fig. 9, it can be easily seen that BM3D
loses the most detailed information on boat, especially on the
red highlighted window, which is hard to see the fine lines
behind the three thick steer structure lines. Though EPLL,
WNNM, MLP, and PCLR could see a little such fine lines,
they are still far from satisfaction. But interestingly, our ARN
could reconstruct much better clear shape of these thick and
fine lines.

As shown in the red highlighted regions of Fig. 10, one can
clearly see that our ARN could recover the bridge of the nose
and fluctuation lips on Lena simultaneously while the others
miss a lot of details and textures. Focusing on the recovered

lips, EPLL, MLP, and PCLR bring in a lot of impurities,
consequently it is hard for us to recognize whether they are the
real lips. Meanwhile, BM3D and WNNM lose much detailed
information. In one word, they not only add too many artificial
noises, but also over-smooth the edges and structures. On the
contrary, our ARN reconstructs almost all the pleasant details.

Actually, we can get the same observations from the other
images. It is obviously that with the increase of noise variance,
other state-of-the-art methods either over smooth images,
resulting in the loss of detailed information, or add too many
artificial noises, which greatly deteriorates the image quality.

To conclude, thanks to the introduction of adaptive shortcuts
into our network, ARN can learn the precise mappings from
noisy images to the clean ones, producing much more visually
pleasant denoising images.
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Fig. 9. Denoising comparison on Boat with state-of-the-art methods (σ = 25). (Zoom in for better view.)

Fig. 10. Denoising comparison on Lena with state-of-the-art methods (σ = 50). (Zoom in for better view.)

4) Running Time: For a fair comparison, we profile time
consumption of all the methods in a Matlab 2015b environ-
ment on the same PC (Intel CPU 3.30 GHz and 16GB RAM).
Our method is implemented using GPU. From TABLE III,
we could see that the running time spent on one image is the
same by our method. However, the running time of all the
other methods increases when σ gets larger, which revealed

the absolute advantage of our ARN over other methods. This
is mainly benefited from the architecture of residual learning
and other training skills in the proposed method.

B. Single Image Super-Resolution

If we use x = Ay to describe the relationship between
high-resolution image y and low-resolution image x , and A is
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Fig. 11. Super-resolution comparison on Butterfly of set5 with state-of-the-art methods (Scale = 2). (Zoom in for better view.)

Fig. 12. Super-resolution comparison on ppt3 of set14 with state-of-the-art methods (Scale = 3). (Zoom in for better view.)

TABLE III

AVERAGE RUNNING TIME(s) FOR ONE IMAGE WITH DIFFERENT

NOISE LEVEL σ ON TESTING SET(SEE FIG. 7). THE BEST

RESULT FOR EACH DATASET IS HIGHLIGHTED

a down-sampling factor, problem of recovering y from x could
be viewed as image super-resolution. By comparing our ARN
with classic network-based SRCNN [10] and JOR [31], we can
see the great performance of ARN.

1) Training Details: For a fair comparison, follow-
ing [10] and [31], we use 91 images from Yang et al. [7] as
the training set and evaluate all the methods on the standard
Set5 [23], Set14 [49], BSD100 [22], and Urban100 [50]
datasets. Similar to [10], we first down-sample each image in
the training set via scaling factors of ×2, ×3, and ×4, without
adding noise in the down-sampled images. Then, we train our
models respectively for different scaling factors of ×2, ×3,
and ×4. Besides, we split training images into overlapping
patches of size 33×33 with stride of 10 for increasing the
datasets.

2) Quantitative Results: The comparing results, when
scale = 2, 3, and 4, are shown in Table IV and Table V.
Because JOR [31] does not contain trained model when

TABLE IV

AVERAGE RESULTS OF PSNR(dB) ON THE SET5, SET14,
BSD100, URBAN100 DATASET. THE BEST RESULT

FOR EACH DATASET IS HIGHLIGHTED

scale = 2 in its code, we neglect the result for that case. It can
be observed that our ARN always exceeds other competing
methods a lot for all the down-sampling scales over various
testing results.

3) Visual Quality: Apart from PSNR and SSIM, we also
make visual quality comparisons to demonstrate the strong
power of our ARN. We randomly select three common images
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Fig. 13. Super-resolution comparison on Woman with state-of-the-art methods (Scale = 4). (Zoom in for better view.)

Fig. 14. Deblocking comparison on Baboon with state-of-the-art methods (QF = 10). (Zoom in for better view.)

TABLE V

AVERAGE RESULTS OF SSIM ON THE SET5, SET14,
BSD100, URBAN100 DATASET. THE BEST RESULT

FOR EACH DATASET IS HIGHLIGHTED

from testing sets, as seen in Fig. 11, 12, and 13. Viewing
the whole pictures, obviously, our ARN could recover better
details and sharper edges. Specially, in the green windows in

TABLE VI

AVERAGE RESULTS OF PSNR(dB) ON THE CLASSIC5
AND LIVE1 DATASET. THE BEST RESULT FOR

EACH DATASET IS HIGHLIGHTED

Butterfly, ppt3, and Woman, we can see more clear patterns,
music notations, and lips in images recovered by our ARN.
In a word, based on the adaptive structure of the proposed
ARN, our method can recover better images with high visual
quality.
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Fig. 15. Deblocking comparison on Barbara with state-of-the-art methods (QF = 20). (Zoom in for better view.)

Fig. 16. Deblocking comparison on Peppers with state-of-the-art methods (QF = 30). (Zoom in for better view.)

Fig. 17. Deblocking comparison on Lighthouse3 with state-of-the-art methods (QF = 40). (Zoom in for better view.)

C. JPEG Image Deblocking

In order to further demonstrate the applicability of our
proposed ARN, we investigate the JPEG image deblock-
ing problem. It aims to suppress the block artifacts in the
JPEG compressed images. Since ARCNN [11] and Zhang’s
method [34] are both classic methods, it would be persuasive
to compare our method with them. We distorted the images
by JPEG compression and set four compression quality fac-
tor (QF): 10, 20, 30, and 40 for the JPEG encoder.

1) Training Details: Following [11], we use Berkeley Seg-
mentation Dataset BSD500 [22] as the training set and evaluate

all the methods on the standard classic5 and LIVE1 datasets.
Similarly, we split these training images into overlapping
patches of size 50×50 with stride of 10.

2) Quantitative Results: From Table VI and Table VII,
we can find that our ARN has superiority than other
methods in both PSNR and SSIM. To be more specific,
the average results of our ARN exceeds the second best
from 0.18dB to 0.39dB. Likewise, the average SSIM values
also have absolute advantage.

3) Visual Quality: To further study the deblocking results,
we took a random sample of four images as QF = 10 (Fig. 14),
20 (Fig. 15), 30 (Fig. 16), and 40 (Fig. 17) respectively.
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TABLE VII

AVERAGE RESULTS OF SSIM ON THE CLASSIC5 AND LIVE1 DATASET.
THE BEST RESULT FOR EACH DATASET IS HIGHLIGHTED

As shown in the blue windows of the four images, we can
draw the same conclusions that our ARN reconstructs better
results as before. In our recovered images, it is hard to find
any artificial blocks, which could be seen in the results by
other methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed adaptive residual networks
(ARN) for high-quality image restoration. It is made up of
six cascaded adaptive shortcuts, convolutional layers and PRe-
LUs. Each adaptive shortcut contains two small convolutional
layers, followed by PReLU activation layers and one adaptive
skip connection. Various scaling parameters are assigned to the
different inputs of the shortcuts, and the scaling is considered
as part of the weight parameters of the ARN model, which
can be trained adaptively according to different applications.
It is noteworthy that the adaptive shortcut helps on recovering
clean image details and tackling the gradient vanishing prob-
lem. Moreover, we illustrate some effective strategies to train
our ARN, including PReLU, xiaver initialization and adam
optimization. Finally, extensive experimental results validate
the excellent performance of our ARN.

In the future, we would like to deeply investigate the
property of different image restoration problems via our ARN.
By analyzing and comparing similarities and differences of
various restoration applications, we expect to find more rules
and strategies when reconstructing high-quality images.
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