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Abstract—Frame rate up-conversion (FRUC) usually suffers
unreliable motion vectors due to the absence of the current
frame to be interpolated. Besides, since the majority of video
sequences are usually compressed by various coding standards
to reduce the data volume, the quality of generated frames in
FRUC will be further impaired. To address this problem, we
proposed two FRUC algorithms based on deep residual network.
We first present a deep residual network for FRUC (DRNFRUC),
which consists of feature extraction, feature recursive analysis,
and image restoration parts with a skip connection between
the input and output of the network. The proposed DRNFRUC
takes the result of an arbitrary existing FRUC method as the
input and is able to significantly reduce the edge blurring and
blocking artifacts when the motion of the block is violent. In
addition, we proposed a deep residual network with weighted
convolutional motion compensation (DRNWCMC) for FRUC,
where the convolution operations can be embedded into the
motion compensation interpolation (MCI) in any existing MCI
based FRUC method. In DRNWCMC, we first devise two
convolutional neural networks corresponding to the forward and
backward motion compensated frames, respectively. And then
the adaptive interpolation coefficients for motion compensation
are designed as two 1x1 convolutional kernels. Finally, the
interpolation result of WCMC is fed into another convolutional
neural network to further improve the performance. All the
parameters involved in DRNWCMC are trained simultaneously
under the same cost function. Experimental results show that the
two proposed algorithms can remarkably improve both objective
and subjective quality of interpolated frames.

Index Terms—frame rate up-conversion (FRUC), residual net-
work, convolutional neural network.

I. INTRODUCTION

FRAME rate up conversion (FRUC) refers to a frequently
used technique that makes use of two original adjacent

frames to insert an interpolated frame between them in order
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to improve the visual quality by increasing the frame rate
[1]. Recently, FRUC is embedded in many applications such
as digital television, liquid crystal display (LCD), distributed
video coding (DVC) and video conferencing [2], [3], [4].

In the past decades, some simple FRUC algorithms generate
interpolated frames by copying the previous frame or aver-
aging the previous frame and the following frame. However,
these simple algorithms fail to generate satisfactory interpo-
lated frames since they neglect the motions among successive
frames. As the research progresses, motion compensated frame
rate up-conversion (MC-FRUC) was proposed to improve
the quality of interpolated frames. MC-FRUC which takes
object’s movement into consideration generates more satis-
factory results in existing FRUC algorithms [5]. The most
significant steps of MC-FRUC are motion estimation (ME)
and motion compensated interpolation (MCI) [6]. ME finds
motion vectors for each frame to be interpolated by comparing
the similarity of two or more successive frames. MCI generates
an intermediate frame with motion vectors obtained in the ME
step.

Better motion vectors generated from ME will lead to in-
terpolated frame with higher visual quality. In order to reduce
visible artifacts, several strategies are proposed to obtain better
motion vectors. The most widely-applied algorithm is the
block matching algorithm (BMA) [7], [8], [9], [10] due to its
hardware-friendly implementation and intuitive architecture.
The algorithms of ME based on BMA can be divided into
two categories: unilateral ME (UME) and bilateral ME (BME)
[11], [12]. UME usually generates incorrect motion vectors
that can not reflect the true motion of objects and results in
overlaps and holes. BME mitigates the problems by combining
motions of the previous and the following frames. Thus, most
of FRUC algorithms employ BME [13], [14], [15], [16] to
reduce computational complexity and improve the accuracy
of motion vectors. Nevertheless, serious artifacts [17] [18] can
be observed when the motion vectors of neighboring blocks
are not consistent. To further reduce the blocking artifacts
and improve the quality of interpolated frame, many advanced
motion compensation methods were proposed, e.g., overlapped
block motion compensation (OBMC) [19], [11], [20], [21], the
weighted index-based bidirectional MCI (WMCI) [13] and the
direction-select ME based OBMC (DS-OBMC) [14].

However, due to the absence of the frame to be interpolated,
it is very difficult to find the accurate motion vectors in FRUC.
Besides, most videos are usually compressed by various cod-
ing standards to reduce the huge data volume of the original



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2885564, IEEE
Transactions on Circuits and Systems for Video Technology

2

Fig. 1: Frame Rate Up Conversion Using Deep Residual Network

video, which further limits the quality of interpolated frames.
To remove artifacts and improve performance, Wang et al.
[22] proposed a decoder-end post-processing deep convolution
network was investigated to boost the quality of decoded
frames. Jia et al. [23] proposed a spatial-temporal residue
network based in-loop filter to improve visual quality. Song
et al. [24] proposed a practical convolutional neural network
as the loop filter for intra frames. However, the existing
methods have not been fully exploited in the scenario of
bidirectional motion compensation. To address this problem,
we proposed a deep residual network with weighted convolu-
tional motion compensation, which can utilize the spatial and
temporal information of forward motion compensated frame
and backward motion compensated frame. The algorithms are
able to improve the performance of interpolated frames over
compressed videos and mitigate the ghost and fuzzy effects
in edge regions when compared with the traditional FRUC
algorithms.

This paper is organized as follows. Section II introduces the
related work. Section III describes the proposed deep residual
network for frame rate up conversion. Section IV presents the
proposed deep residual network with weighted convolutional
motion compensation for frame rate up conversion. Section V
provides experimental results. Finally, Section VI concludes
the paper.

II. RELATED WORK

A. Motion-Compensated Frame Rate Up-Conversion

Many ME algorithms have been proposed to improve the
accuracy of obtained motion vectors in FRUC. Hill et al.
[25] proposed shape adaptive phase correlation to decrease
the influence of background and predigest the identification
of the dominant peak. Compared with the traditional full-
search BMA, a novel adaptive fast BMA [26] was proposed
to determine the motion vectors with a wide range of motion
content. Kang et al. [16] proposed the dual motion estimation
(Dual ME) to refine the motion vectors using the unidirectional
and bidirectional matching ratios of blocks in the previous
and following frames. The extended bilateral motion esti-
mation (EBME) [13] employed expanded motion trajectory
to calculate motion vectors of the block overlapping with
each of two adjacent original blocks and then utilize motion
vector refinement and smoothing in order to find the accurate
motion vectors. With their direction-select motion estimation
(DS-ME) [14], Yoo et al. performed motion estimation in

both forward and backward directions and then selected the
more reliable one from them. Li et al. [15] incorporated
multi-resolution search into BME and constructed the wavelet
pyramid to reduce computational cost and reserve the high-
frequency details of interpolated frame. However, the above-
mentioned algorithms may induce blocking artifacts due to
incorrect motion vectors.

The existing motion compensated interpolation algorithm
in FRUC mainly includes the overlapped block motion com-
pensation (OBMC) [19], [20], [21], spatio-temporal auto-
regressive (STAR) [27], [28], the weighted index-based bidi-
rectional MCI (WMCI) [13], the direction-select ME based
OBMC algorithm (DS-OBMC) [14], and the dual-weighted
overlapped block motion compensation (DW-OBMC) [29].
OBMC and DS-OBMC use the mean value of forward and
backward interpolated frame candidates as the interpolated
frame. WMCI and DW-OBMC define the weighted coeffi-
cients of the previous and following interpolated frame can-
didates by calculating the sum of overlapped area absolute
difference (SOAD). However, these MCI algorithms [13], [19],
[14] still fail to calculate the optimal weighted coefficients.

B. Convolutional Neural Network

Recently, convolutional neural network (CNN) [30] has
achieved great success in representation of image features
[31] and image classification. Krizhevsky et al. [32] trained
a large, deep convolutional neural network to classify massive
images in the ImageNet and greatly reduce the error rate.
Yim et al. [33] extracted features from multiple layers to
achieve the improved performance. CNN is also applied in
generating high-quality images. Dong et al. [34] proposed
a three layer convolutional neural network to improve the
performance of super-resolution. Kim et al. [35] verified
that the deeper convolutional network is trained, the better
performance is achieved. Zhang et al. [36] proposed a residual
highway convolutional neural network to improve the quality
of reconstructed frame in HEVC. In [37], an adaptive residual
network was proposed for image restoration. Meanwhile,
training deeper CNN widens the receptive field [35], which is
applicable to image restoration problems. However, the deep
network architectures are hard to train because of a mass
of parameters and limited training dataset. To mitigate the
problem of over-abundant parameters, Kim et al. [38] proposed
deeply-recursive convolutional network (DRCN) for super-
resolution. Deeply recursive residual network (DRRN) [39]
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was also proposed to improve the peformance of recovered
image. These CNN based methods generate an image with
high quality by reconstructing realistic texture detail.

III. DEEP RESIDUAL NETWORK FOR FRAME RATE UP
CONVERSION

A. Overall Architecture of the Network

Fig. 1 shows the overall architecture of the proposed deep
residual network for frame rate up conversion (DRNFRUC).
We firstly produce an initial interpolated frame defined as IFn
by using an arbitrary existing FRUC algorithm. Then, IFn is
fed into our deep residual network. Finally, the output of the
network is defined as În. DRNFRUC is formulated as follows:

IFn = FRUC(In−1, In+1),

În = DRN(IFn ),
(1)

where function FRUC denotes the process of FRUC using the
previous frame In−1 and the following frame In+1 as input,
function DRN denotes the deep residual network enhancing
the interpolated frame IFn .

B. Deep Residual Network

Following Ledig et al. [40], our deep residual network
shown in Fig. 2 consists of three parts. The first part, feature
extraction, uses convolution filters of which the size is 3×3 to
extract features of the image as feature maps. Then, we add
batch normalization layer followed by ReLU, which acts as
the activation function, in order to decrease training time.

The second part called feature recursive analysis widens the
receptive field to analyze image feature extracted from larger
image region with each recursion. For each recursion, we use
a residual block [41], [42] illustrated in Fig. 3:

Fig. 3: Architecture of residual block

y = x+H(x), (2)

where x and y denote the input and output of the residual
block, respectively, H denotes the mapping of the residual
block. We also use 3×3 convolution kernels for each filter. The
third part is called image restoration which uses the output of
the feature recursive analysis to obtain the interpolated frame.

TABLE I: Validation dataset

video resolution video resolution

BlowingBubbles 416× 240 NewspaperR0 1024× 768

NightMove 704× 576 Silent 352× 288

This part only uses 1 filter with 3 × 3 convolution kernel
because we merely concentrate on one luminance channel
for each frame. Besides these operations, we add the skip
connection between the input of deep residual network and the
output of image restoration. We consider the three end-to-end
parts as a mapping. Then, the input of deep residual network
is directly transmitted to the output of the mapping, similar
to a big residual block. The skip connection not only has fast
convergence but helps our algorithm obtain better solution.

C. Analysis of Structure and Number of Residual Block

To select the optimal filter number, the structure of the resid-
ual blocks, and the number of the residual blocks, we choose
DS-ME to conduct the simulation. Both the training and
testing sequences are compressed by the reference software
JM 18.6 at quantization parameter QP=32. 4 video sequences
are chosen as the validation dataset presented in Table I to
select optimal parameters of the proposed DRNFRUC.

1) Structure of Residual Block: We fist set filter number
n1 = 64 in the feature extraction part and number of residual
blocks c = 16 in the feature recursive analysis part inspired
by Kim [35] and Ledig [40] . For each residual network, we
use convolution layers, batch normalization layers and ReLU.
In general, the performance would improve if we design the
reasonable structure of residual block. We conduct three ex-
periments with different structures of residual block shown in
Fig. 4: (a) each residual block contains one convolutional layer
followed by one batch normalization layer defined as Cov+BN,
(b) each residual block contains two convolutional layers,
two batch normalization layers and one activation function
defined as 2Cov+2BN+ReLU, (c) each residual block contains
three convolutional layers, three batch normalization layers
and two activation functions defined as 3Cov+3BN+2ReLU.
The PSNR values over the test sequences observed at 3.5×105

backpropagations are shown in Table II. It is clear that superior
performance could be achieved by using 2Cov+2BN+ReLU.
The result shows that a uncomplicated residual network is
preferred when it is uncertain that adding more weights and
increasing the complexity of residual network would improve
the performance.

2) Filters and Number of Residual Blocks in Deep Residual
Network: In He et al.’s work [41] , the depth of network
greatly influences the performance. In the pioneering work of
Dong et al. [34] , adding more filters increases the performance
moderately at the cost of running time. Following above-
mentioned experiments, we adopt the 2Cov+2BN+ReLU as
the basic structure of residual network. To validate the influ-
ence of changing the number of layers and filters, we choose
c = 8, 16, 20 and n1 = 32, 64, 96, i.e., we conduct a total
of 9 experiments with different combinations in DRNFRUC.
After 3.3× 105 iterations, the average PSNR values over the
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Fig. 2: Architecture of deep residual network

TABLE II: Average PSNRs on all the validation dataset with
different structures of residual blcck at QP=32

video
sequences

residual block
Cov
+BN

2Cov
+2BN+ReLU

3Cov
+3BN+2ReLU

BlowingBubbles 29.92 30.04 30.03

NewspaperR0 36.75 36.91 36.93

NightMove 26.21 26.20 26.21

Silent 31.80 31.85 31.84

Average 31.17 31.25 31.25

TABLE III: Average PSNRs on all validation dataset of
different filter number and number of residual blocks for deep
residual network at QP=32

Filter number (n1)

Number of residual
blocks (c) 8 16 20

32 31.23 31.24 31.24

64 31.24 31.25 31.26

96 31.24 31.23 31.25

test sequences are shown in Table III. The result shows that
it is not necessary to employ more filters and more residual
blocks to improve the performance. When we set c = 16 and
n1 = 64, the performance of the network is slightly higher
than the others.

IV. DEEP RESIDUAL NETWORK WITH WEIGHTED
CONVOLUTIONAL MOTION COMPENSATION FOR FRAME

RATE UP CONVERSION

Since DRNFRUC only employs the interpolated frame gen-
erated by the existing FRUC algorithms, neglecting the influ-
ence of motion estimation and motion compensation interpola-
tion in FRUC, we also propose a deep residual network with
weighted convolutional motion compensation (DRNWCMC)
in this Section to further improve the performance of FRUC.

A. Overall Scheme of DRNWCMC Algorithm

Our proposed algorithm shown in Fig 5. consists of three
components. We firstly obtain forward motion compensated
frame Ivf and backward motion compensated frame Ivb by
using bilateral motion estimation. It should be noted that other
methods can also be employed to estimate Ivf and Ivb. Then,

(a) (b) (c)

Fig. 4: Structure of resudual block: (a) Cov+BN (b)
2Cov+2BN+ReLU (c) 3Cov+3BN+2ReLU

we use weighted convolutional motion compensated interpola-
tion (WCMCI) to generate an initial interpolated frame IWC

n .
Finally, a deep residual network is trained to reduce blocking
artifacts and enhance the quality of interpolated frame. The
whole process of DRNWCMC is formulated as:

IWC
n = WCMC(Ivf , Ivb),

În = DRN(IWC
n ),

(3)

where function WCMC denotes the process of WCMCI.

B. Forward and Backward Convolutional Neural Network

When the motion is violent, it is very difficult to obtain
Ivf and Ivb with high accuracy, resulting in interpolated frame
with low quality. To address this problem, we use forward and
backward convolutional neural networks to improve the quality
of Ivf and Ivb, respectively. Forward and backward convolu-
tional neural networks have the same structure as shown in Fig.
6. Both of the two networks use d convolution+ReLU layers
and a convolution layer, which extract features by sharing
the same filter weights. The parameter setting will be further
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Fig. 5: DRNWCMC

discussed later in the following subsections. For each convo-
lution+ReLU layer, we use n2 filters with 3 × 3 convolution
kernels. The last layer consists of a single filter with 3 × 3
convolutional kernels. We also add a skip connection between
the input and output of both networks. The experiments show
that the skip connection can reduce the convergence time and
enhance the performance of the network.

Fig. 6: Forward and backward convolutional neural network

C. Weighted Convolutional Motion Compensation Interpola-
tion

Different from OBMC and DS-OBMC, we propose a novel
weighted convolutional motion compensation interpolation
(WCMCI) to improve the performance of motion compensa-
tion. The interpolation is defined as

IWC
n =

wf ×Df (Ivf ) + wb ×Db(Ivb)

wf + wb
, (4)

where functions Df and Db denote forward and backward
CNNs, respectively, wf and wb are trainable variables. Our
model consists of two stages: extended information filtering
and bilateral weighted average reconstruction. The first stage
employs Df and Db to enhance pixel information in Ivf and
Ivb , respectively. Calculating the weighted average of the
output of Df and Db, the second stage generates an inter-
polated frame IWC

n . wf and wb, which are learned together
with forward and backward convolutional neural networks, are
viewed as a filter with 1×1 convolutional kernel, respectively.

D. Analysis of Filters and Number of layers in WCMCI
To obtain the appropriate number of filters and layers in

WCMCI, we set d = 8, 16, 20 and n2 = 32, 64, 96 during
experiments. The result is shown in Table IV. We find that
different number of filters and residual blocks in WCMCI do
not have much impact on the objective evaluation.

TABLE IV: Average PSNRs on all validation dataset of
different filter number and number of layers for DRNWCMC
at QP=32

Filter number (n2)

Number of
layers (d) 8 16 20

32 31.25 31.25 31.27

64 31.25 31.26 31.25

96 31.24 31.27 31.25

E. Loss Function

In order to obtain the optimal result, we minimize the mean
squared error (MSE) between În and the ground truth In .
Moreover, we add the quadratic sum of the weights of all the
convolutional layers in the network to the loss function as the
regularization term. We define the loss function as follows:

Lθ =
1

MNS

S∑
n=1

M∑
x=1

N∑
y=1

(În(θ, x, y)− In(x, y))
2

+ β
∑

θ2,

(5)

where M and N denote the height and width of each
frame, respectively. S denotes the number of frames dur-
ing training, β denotes the coefficient of weight decay,
and θ denotes the learnable weights of all the convolu-
tional layers in the proposed network. If we define D =

1
MNS

∑S
n=1

∑M
x=1

∑N
y=1(În(θ, x, y) − In(x, y))

2, the gradi-
ent of the loss function in Eq. (5) can be expressed as

∂L

∂θ
=

∂D

∂θ
+ βθ. (6)

Therefore, the update process of the weights of the proposed
network can be expressed as

θt+1 =θt − η
∂L

∂θ

=θt − η(
∂D

∂θ
+ βθt)

=(1− ηβ)θt − η
∂D

∂θ
.

(7)

We can see with the iteration going on, (1−ηβ)θt becomes
closer to zero, which means multiplying the parameter θ by a
factor smaller than one before the updating. It should be noted
that the loss function in Eq. (5) is suitable to both of the two
networks we proposed in this paper. And in DRNWCMC, the
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(a) (b)

Fig. 7: The PSNRs of validation dataset with different β during training: (a) DRNFRUC, (b) DRNWCMC

parameter θ includes the weights in the forward and backward
convolutional neural network, the coefficients of wf and wb

in Eq. (4), and the weights of the following deep residual
network. In the experiment, we found that the performance of
the network can be improved when giving an appropriate value
of β. We conducted experiments to compare the results of the
different β. Here, we set c = 16, d = 16, n1 = 64 and n2 =
64. The PSNRs of validation dataset with different β during
training are shown in Fig. 7. We can see that DRNFRUC and
DRNWCMC converge the fastest and gains the highest PSNR
over the validation dataset when we set β = 0.004 and β =
0.005.

V. EXPERIMENTAL RESULTS

In our experiments, all the sequences are compressed by the
reference software JM18.6 of H.264 before performing FRUC.
It should be noted that other coding standards can also be
utilized. Since our method can be applied to all the FRUC
algorithms, we only select DS-ME and EBME which use DS-
OBMC and WMCI respectively for convenience. We use both
the subjective and objective criterions to evaluate the quality
of interpolated frames.

A. Training and testing Datasets

We choose 20 video sequences with different resolutions
as the training dataset presented in Table V. These video
sequences are compressed by JM18.6 under QP of 28, 32,
36, and 40. The validation dataset is shown in Table I, which
is the same as the simulation in the Section III.C and Section
IV.D. Besides, we choose 11 video sequences with different
resolutions as the testing dataset presented in Table VI.

B. Training Parameters Setting

We use the aforementioned training dataset to train all the
networks on a NVIDIA TITAN X. Each frame in the training
dataset is cut into sub images. We randomly select 16 sub
images as a mini-batch. Adam algorithm is used as optimiza-
tion method to update the weights of the network. The initial
learning rate is set to 0.0001 and decreases gradually during

TABLE V: Training dataset

video resolution video resolution

BasketballDrill 832× 480 BasketballDrillText 832× 480

BasketballDrive 1920× 1080 BQMall 832× 480

BQTerrace 1920× 1080 Cactus 1920× 1080

ChinaSpeed 1024× 768 ElephantsDream 352× 288

FourPeople 1280× 720 Johnny 1280× 720

Kimono1 1920× 1080 KristenAndSara 1280× 720

ParkScene 1920× 1080 PartyScene 832× 480

PeopleOnStreet 2560× 1600 RaceHorses 832× 480

Traffic 2560× 1600 Vidyo1 1280× 720

Vidyo3 1280× 720 Vidyo4 1280× 720

TABLE VI: Testing dataset

video resolution video resolution

Akiyo 352× 288 BigShips 1280× 720

Container 352× 288 Crew 1280× 720

Foreman 352× 288 Hall 352× 288

Harbour 1280× 720 Mobile 352× 288

Mobisode2 416× 240 Mother-daughter 352× 288

News 352× 288

the training process. After 330 thousand update iterations, the
results of validation set tend to converge.

C. Subjective and Objective Evaluation

Here, we select c = 16, d = 16, n1 = 64, n2 = 64 and
2Cov+2BN+ReLU as the parameters of the network in order
to not only keep superior performance but also generate a high
quality interpolated frame at low computation cost. Firstly, we
compare the performance of selected FRUC algorithm with
corresponding DRNFRUC (β = 0), DRNFRUC (β = 0.005)
and DRNWCMC (β = 0.005) from subjective criterion view.
In Fig. 8 and Fig. 9, we visually assess some interpolated
frames generated by DS-ME and our proposed algorithms
over Foreman and Hall at QP=32. We can find that DS-ME
produces different levels of blurring and blocking artifacts
when the motion of the block is violent. The deformation
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8: The 79 th interpolated frames of Foreman reconstructed by different FRUC algorithms: (a) and (f) interpolated by
DS-ME, (b) and (g) interpolated by DRNFRUC (β = 0), (c) and (h) interpolated by DRNFRUC (β = 0.005), (d) and (i)
interpolated by DRNWCMC, (e) and (j) original image

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9: The 32 th interpolated frames of Hall reconstructed by different FRUC algorithms: (a) and (f) interpolated by DS-ME,
(b) and (g) interpolated by DRNFRUC (β = 0), (c) and (h) interpolated by DRNFRUC (β = 0.005), (d) and (i) interpolated
by DRNWCMC, (e) and (j) original image
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TABLE VIII: PSNRs and SSIMs of the interpolated frames reconstructed by the proposed and DS-ME algorithms for testing
dataset at QP=24, 28, 32

Sequence
DS-ME DRNFRUC

(β = 0)
DRNFRUC
(β = 0.005)

DRNWCMC
(β = 0.005)

QP=24 QP=28 QP=32 QP=24 QP=28 QP=32 QP=24 QP=28 QP=32 QP=24 QP=28 QP=32

Akiyo 41.78
0.9792

39.87
0.9689

37.47
0.9559

41.47
0.9585

40.00
0.9700

37.90
0.9593

41.57
0.9791

40.04
0.9703

37.97
0.9598

41.77
0.9797

40.17
0.9709

38.09
0.9602

BigShips 36.66
0.9532

35.47
0.9843

33.66
0.9683

36.83
0.9546

35.72
0.9848

34.00
0.9699

36.82
0.9545

35.71
0.9848

34.02
0.9700

36.85
0.9547

35.70
0.9849

34.04
0.9702

Container 38.46
0.9596

35.96
0.9208

33.53
0.8871

38.25
0.9594

35.92
0.9214

33.57
0.8884

38.31
0.9595

35.96
0.9217

33.61
0.8887

38.40
0.9601

36.01
0.9219

33.66
0.8889

Crew 33.75
0.9236

33.47
0.9538

32.86
0.9445

33.87
0.9256

33.58
0.9549

33.03
0.9464

33.89
0.9264

33.63
0.9555

33.06
0.9468

33.91
0.9265

33.63
0.9555

33.09
0.9475

foreman 32.63
0.9279

32.03
0.9025

31.00
0.8756

32.61
0.9278

32.09
0.9032

31.14
0.8787

32.66
0.9281

32.13
0.9041

31.17
0.8793

32.65
0.9281

32.17
0.9045

31.20
0.8798

Hall 36.64
0.9628

36.03
0.9489

34.71
0.9385

36.60
0.9634

36.08
0.9508

34.85
0.9417

36.62
0.9635

36.07
0.9507

34.91
0.9419

36.69
0.9637

36.12
0.9508

34.92
0.9418

Harbour 34.11
0.9557

33.73
0.9871

32.61
0.9817

34.23
0.9578

33.89
0.9874

32.82
0.9825

34.24
0.9579

33.90
0.9875

32.85
0.9826

34.22
0.9577

33.89
0.9874

32.85
0.9826

Mobile 28.82
0.9522

28.44
0.9415

27.64
0.9218

29.04
0.9548

28.69
0.9451

27.92
0.9269

29.04
0.9546

28.68
0.9449

27.92
0.9268

29.03
0.9546

28.68
0.9447

27.90
0.9262

Mobisode2 41.34
0.9711

40.10
0.9633

38.46
0.9531

40.90
0.9688

39.96
0.9621

38.44
0.9530

40.98
0.9702

40.05
0.9631

38.52
0.9544

41.24
0.9712

40.12
0.9641

38.65
0.9551

Mother-daughter 40.32
0.9711

38.49
0.9510

36.46
0.9258

40.22
0.9698

38.65
0.9527

36.73
0.9302

40.33
0.9703

38.72
0.9533

36.75
0.9308

40.43
0.9708

38.77
0.9537

36.81
0.9309

News 34.57
0.9623

33.89
0.9505

32.76
0.9359

34.61
0.9628

34.02
0.9522

33.04
0.9395

34.64
0.9629

34.05
0.9526

33.06
0.9401

34.67
0.9635

34.07
0.9529

33.07
0.9401

Average 36.28
0.9561

35.23
0.9521

33.74
0.9353

36.24
0.9548

35.33
0.9531

33.95
0.9379

36.28
0.9570

35.36
0.9535

33.99
0.9383

36.35
0.9573

35.39
0.9538

34.03
0.9385

TABLE VII: PSNRs of the interpolated frames reconstructed
by DS-ME, WCMC-FRUC and DRNWCMC for testing
dataset at QP=28, 32

Sequence
DS-ME WCMC-FRUC

(β = 0.005)
DRNWCMC
(β = 0.005)

QP=28 QP=32 QP=28 QP=32 QP=28 QP=32

Akiyo 39.87 37.47 39.91 37.51 40.17 38.09

BigShips 35.47 33.66 35.51 33.71 35.70 34.04

Container 35.96 33.53 36.00 33.56 36.01 33.66

Crew 33.47 32.86 33.50 32.91 33.63 33.09

foreman 32.03 31.00 32.04 31.01 32.17 31.20

Hall 36.03 34.71 36.03 34.71 36.12 34.92

Harbour 33.73 32.61 33.75 32.65 33.89 32.85

Mobile 28.44 27.64 28.45 27.66 28.68 27.90

Mobisode2 40.10 38.46 40.12 38.48 40.12 38.65

Mother-daughter 38.49 36.46 38.54 36.51 38.77 36.81

News 33.89 32.76 33.90 32.77 34.07 33.07

Average 35.23 33.74 35.25 33.77 35.39 34.03

and blocking effects appear in the red rectangle of the in-
terpolated frame. However, DRNFRUC effectively eases these
problems and reconstructs a high quality interpolated frame.
From subjective perspective view, the interpolate frames by
DRNWCMC are more distinct than those of DRNFRUC.

Besides, we conduct experiments to evaluate the result of
WCMC-FRUC. The PSNRs of DS-ME and our proposed
algorithms on each testing sequence are presented in Table
VII. It can be observed WCMC alone outperforms DS-ME
by up to 0.02dB and 0.03dB at QP=28 and 32, respectively.
Obviously, the gain is not very significant by WCMC alone,
which proves the necessity of the convolutional neural network
following WCMCI in the proposed DRNWCMC.

Then, we evaluate the objective quality of our proposed
algorithms and DS-ME in terms of PSNR and structural sim-
ilarity index metric (SSIM) [43] which are popular evaluation
criterions of images and videos. The PSNRs and SSIMs of
our proposed algorithms and DS-ME on each testing sequence
at different QPs are presented in Table VIII and Table IX.
It can be observed that when compared with DS-ME, the
proposed algorithms improve the PSNRs by up to 0.22dB,
0.30dB, 0.62dB, 0.74dB and 0.64dB, at QP=24, 28, 32, 36,
40, respectively. The average PSNRs of different algorithms
on all the testing sequences are presented in the last row
of each Table, and the proposed algorithms outperform DS-
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TABLE IX: PSNRs and SSIMs of the interpolated frames reconstructed by the proposed and DS-ME algorithms for testing
dataset at QP=36, 40

Sequence
DS-ME DRNFRUC

(β = 0)
DRNFRUC
(β = 0.005)

DRNWCMC
(β = 0.005)

QP=36 QP=40 QP=36 QP=40 QP=36 QP=40 QP=36 QP=40

Akiyo 35.01
0.9375

32.42
0.9099

35.74
0.9444

33.02
0.9175

35.73
0.9446

33.06
0.9179

35.75
0.9444

33.06
0.9185

BigShips 31.69
0.9383

29.53
0.8842

32.10
0.9418

29.92
0.8902

32.09
0.9416

29.92
0.8903

32.11
0.9418

29.93
0.8904

Container 31.19
0.8560

28.87
0.8249

31.40
0.8591

29.18
0.8314

31.40
0.8591

29.22
0.8320

31.45
0.8591

29.23
0.8312

Crew 32.01
0.9284

30.85
0.8998

32.19
0.9314

31.01
0.9048

32.22
0.9320

31.04
0.9055

32.26
0.9329

31.05
0.9058

Foreman 29.84
0.8405

28.37
0.7939

30.08
0.8466

28.68
0.8026

30.08
0.8468

28.68
0.8028

30.10
0.8468

28.69
0.8026

Hall 32.77
0.9216

30.37
0.8946

33.07
0.9281

30.85
0.9056

33.10
0.9278

30.87
0.9061

33.12
0.9281

30.85
0.9054

Harbour 30.85
0.9680

28.60
0.9368

31.12
0.9698

28.91
0.9408

31.14
0.9698

28.91
0.9407

31.17
0.9701

28.93
0.9409

Mobile 26.44
0.8866

24.58
0.8150

26.78
0.8948

24.92
0.8267

26.76
0.8941

24.93
0.8267

26.75
0.8939

24.91
0.8259

Mobisode2 36.70
0.9392

34.68
0.9211

36.82
0.9407

34.91
0.9245

36.84
0.9411

34.96
0.9255

36.98
0.9424

35.07
0.9267

Mother-daughter 34.28
0.8922

31.95
0.8482

34.65
0.8985

32.17
0.8566

34.66
0.8990

32.17
0.8568

34.71
0.8997

32.26
0.8577

News 31.23
0.9134

29.29
0.8789

31.64
0.9200

29.79
0.8897

31.69
0.9205

29.81
0.8897

31.69
0.9207

29.80
0.8893

Average 32.00
0.9110

29.96
0.8734

32.33
0.9159

30.31
0.8809

32.34
0.9160

30.32
0.8813

32.37
0.9164

30.34
0.8813

ME by up to 0.07dB, 0.16dB, 0.29dB, 0.37dB and 0.38dB,
at QP=24, 28, 32, 36, 40, respectively. The average SSIMs
of different algorithms on all the testing sequences are also
presented in the last row of each Table, and it shows that
the proposed algorithms outperform DS-ME by up to 0.0029,
0.0017, 0.0032, 0.0054 and 0.0079, at QP=24, 28, 32, 36,
40, respectively. Fig. 10 shows the PSNRs of individual
interpolated frames on the Akiyo, BigShips, Container, and
Hall sequences at QP=32. These PSNR curves prove that the
proposed algorithms outperform DS-ME in most cases.

To further verify the applicability of the proposed algorithms
to all the FRUC algorithms, we also conduct the experiments
over EBME. The average PSNRs of our proposed algorithms
and EBME on all the testing sequences at different QPs are
presented in Table X, and it can be seen that the proposed
algorithms also gain up to 0.05dB, 0.24dB, 0.28dB, 0.36dB,
0.40dB, at QP=24, 28, 32, 36, 40, respectively. In addition,
Table VIII summarizes the average SSIMs on all the testing
sequences and shows that the average SSIM of our proposed
algorithms is up to 0.0082 higher than EBME at QP=40.

From these Tables, we can find that the average PSNRs on
all the testing sequences of DRNWCMC (β = 0.005) are up to
0.08dB and 0.04dB higher than those of DRNFRUC with β =
0 and those of DRNFRUC with β = 0.005, respectively, when
DS-ME is selected as the basic FRUC algorithm. Meanwhile
when EBME is used to process the compressed testing dataset,

DRNWCMC (β = 0.005) improves the average PSNRs by up
to 0.09dB and 0.10dB, respectively, compared to DRNFRUC
with β = 0 and DRNFRUC with β = 0.005. The experimental
results verify the superiority of WCMCI in both objective and
subjective criterions compared with OBMC, DS-OBMC and
WMCI.

D. Performance on Expanding Training Dataset

We further investigate the performance of our proposed
algorithms when we select more training sequences. Table XI
shows 26 extra video sequences as added training sequences.
We only evaluate the average PSNRs and SSIMs of our
proposed algorithms on all the testing sequences at QP=32
shown in Table XII. The average PSNRs and SSIMs of our
proposed algorithms using the expanded (46) training se-
quences are 0.12dB, 0.08dB, and 0.08dB higher than those of
corresponding algorithms by using only 20 training sequences.
Thus, expanding training dataset dramatically improves the
performance of our proposed algorithms.

E. Computational Complexity Analysis

The average running times of traditional FRUC algorithms,
DRNFRUC and DRNWCMC over a typical computer (Intel
Core i7-5930K CPU 3.50 GHz, 16 GB memory and NVIDIA
TITAN X) are shown in Table XIII. Obviously, the running
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(a) Akiyo (b) BigShips

(c) Container (d) Hall

Fig. 10: PSNRs of individual interpolated frames reconstructed by the proposed and conventional algorithms for Akiyo,
BigShips, Container, and Hall sequences at QP=32

TABLE X: Average PSNRs and SSIMs on all the testing
dataset reconstructed by the proposed and EBME algorithms
at different QP

QP EBME DRNFRUC (β = 0) DRNFRUC (β = 0.005) DRNWCMC (β = 0.005)

24 36.21 / 0.9544 36.08 / 0.9542 36.14 / 0.9565 36.26 / 0.9550

28 35.26 / 0.9441 35.32 / 0.9454 35.38 / 0.9457 35.50 / 0.9456
32 33.74 / 0.9257 33.92 / 0.9285 33.95 / 0.9289 34.02 / 0.9291
36 32.00 / 0.8997 32.27 / 0.9043 32.30 / 0.9050 32.36 / 0.9051
40 29.95 / 0.8610 30.29 / 0.8692 30.28 / 0.8688 30.35 / 0.8690

times of our proposed algorithms are longer than that of
traditional FRUC algorithms. Besides, we apply the GPU
parallel computing to speed up the process of generating
the interpolated frame. The running times of our proposed
algorithms reduce to a tolerable limit with GPU parallel com-
puting, which contributes to practical usage of our proposed
algorithms.

VI. CONCLUSIONS

In this paper, we propose two novel FRUC algorithms to im-
prove the performance of interpolated frames. A deep residual
neural network for frame rate up conversion (FRUC) is first
devised to directly take the output of any exiting FRUC meth-
ods as the input and enhance the quality of the interpolated

frames. To further improve the performance, we also proposed
a deep residual network with weighted convolutional motion
compensation (DRNWCMC) for FRUC. In DRNWCMC, the
convolution operation can be embedded into the motion com-
pensation interpolation process of traditional FRUC method,
and consequently achieves superior performance. In addition,
to improve the robustness of the proposed method, we also
added the summation of the parameters of the network as the
regularization term in the loss function. Experimental results
show that the proposed algorithms have achieved superior
performance than the traditional FRUC algorithms.
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