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Abstract—The understanding of web images has been a hot
research topic in both artificial intelligence and multimedia
content analysis domains. The web images are composed of
various complex foregrounds and backgrounds, which makes the
design of an accurate and robust learning algorithm a challenging
task. To solve the above significant problem, firstly, we learn a
cross-modality bridging dictionary for the deep and complete
understanding of vast quantity of web images. The proposed
algorithm leverages the visual features into the semantic concept
probability distribution, which can construct a global semantic
description for images while preserving the local geometric
structure. To discover and model the occurrence patterns between
intra- and inter-categories, the multi-task learning is introduced
for formulating the objective formulation with Capped-`1 penally,
which can obtain the optimal solution with a higher probability
and outperform the traditional convex function based methods.
Secondly, we propose a knowledge-based concept transferring
algorithm to discover the underlying relations of different cat-
egories. This distribution probability transferring among cate-
gories can bring the more robust global feature representation,
and enable the image semantic representation to generalize better
as the scenario becomes larger. Experimental comparisons and
performance discussion with classical methods on the ImageNet,
Caltech-256, SUN397 and Scene15 datasets show the effectiveness
of our proposed method at three traditional image understanding
tasks.

Index Terms—Object and scene recognition, image semantic
search, cross-modality bridging, multi-task learning, knowledge
transferring.

I. INTRODUCTION

Benefitting from the rapid development of social media
and smart phones, vast amount of web images are produced
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Fig. 1. The illustration of cross-modality bridging between the visual modality
and semantic modality.

everyday on the Internet, and the imperious demands of
images automatic analysis make web image understanding
a hot research topic [1]–[6]. However as there are natural
semantic gap between vision and language [7]–[9], cross-
modality understanding problem is still far from being solved.
Fig. 1 demonstrates the implicit semantic gap between visual
and language, which relationship is very deep and complex. As
the amount of images goes larger, the semantic gap problem
appears and brings a great influence to cross-modality under-
standing. In details, on the one hand, one visual appearance
may be found in thousands of web images with different
categories, that is to say, there are some common appearances
among different categories. On the other hand, one concept
has thousands of instances, and each instance could consist of
some visual appearances. Cross-modality bridging [10]–[12]
is the job of pairing visual appearance with the most accurate
concept, and it is becoming more challenging as the amount
of web images grows larger.

Many related works have been proposed to solve the prob-
lem of cross-modality bridging: (1) Latent topic model, such as
discriminative Latent Dirichlet Allocation model [13], patch-
based latent variable modeling [14], cross-view learning [7],
etc. (2) Middle-level themes learning, such as semantic multi-
nomial (SMN) model [15], local category co-occurrences [16],
etc. (3) Distance metric learning, such as cross-category trans-
fer learning [17] , Gaussian mixture model [18] , etc. (4)
Semantic classifier model, such as object bank [19] , shared
latent semantic space learning [9], etc. (5) Deep learning, such
as deep convolutional neural network [20] , image broadening
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Fig. 2. The flowchart of the proposed scheme for cross-modality understanding.

based convolutional neural network [21], recurrent neural
networks [22], a two-branch neural network with multiple
layers of linear projections [8], and so on.

Although deep model based methods achieved great success
on image understanding, the underlying mechanism of neural
work is still not fully understood. The cross-modality bridging
still needs further research. In history, feature learning [23]–
[30] has been a successful type of methods for various com-
puter vision tasks. Regularization of corresponding constraint
is the key for feature learning, and the `1 norm is mostly used.
It is a continuous and convex surrogate to loosely approximate
the ideal constraint of `0 norm, but the `1 norm may brings
suboptimal solutions because of the over-penalized problem.
All the above methods give us some insight on solving the
cross-modality bridging problem.

In this paper, the core of image understanding is regarded
as a bridging problem between text labels and original visual
images. Here we solve the above problem by learning an
cross-modality bridging dictionary under the multi-task feature
learning framework, where visual appearances are interpreted
into the probability distribution of semantic categories. The
cross-modality bridging dictionary is a matrix which bridges
the columns of semantic categories and the rows of visual
appearances, and it records the co-occurrences between the
semantic set and the visual set. The processing of multi-task
feature learning are forked column wisely. Each job tries to
discover the co-occurrence and discriminative patterns within
and between different concept categories. The objective func-
tion with the Capped− `1 penalty outperforms the traditional
convex function. The non-intuitive visual appearance can be
encoded into an accurate semantic description using the visual-
semantic dictionary.

Further, we introduce a knowledge-based semantic prop-
agation to transfer the probability distributions for related

categories, and this can boost the robustness of the final global
image semantic description. In details, a categories transfer-
ring matrix is learnt to improve the generalization of image
semantic description, and the comparison experiments shows
this semantic propagation procedure can bring a significant
performance promotion. As the flowchart shown in Fig. 2,
our image understanding algorithm consists two parts: the
first part is the learning of visual-semantic bridging weight,
and the second is the learning of concept transferring matrix.
After the above necessary parameters are learnt, the visual
appearance feature of a given image is calculated using Bag-
of-visual-words model. Then, the semantic representation is
computed as the inner product of visual appearance feature
and the visual-semantic bridging weight. Thirdly, the concept
transferring matrix is used to transfer the weight to related
categories, which improves the generalization capability of the
semantic representation. The semantic representation can be
further used by many applications, such as scene description,
image classification and semantic image retrieving.

Our main contributions can be summarized as following,

• Cross-modality bridging dictionary is proposed to solve
the image understanding, which characterizes the prob-
ability distribution of semantic categories for the visual
appearances.

• Knowledge-based semantic propagation is introduced to
transfer the probability distributions for related cate-
gories, which upgrade the robustness of the final global
image semantic description.

• Experimental comparisons with state-of-the-art methods
on four public datasets evaluate the effectiveness of the
proposed method. Particularly, the performance of our
approach on large scale image search outperforms the
traditional shallow models and the deep models.

The following of the paper contains: Section II introduces
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the related works about cross-modality modeling and knowl-
edge transferring. Section III explains the explicit visual-
semantic dictionary. Section IV introduces the dictionary
learning process. Section V introduces the semantic distance
metric and explains the learning of the transferring matrix.
Section VI discusses the experimental results. At last, Sec-
tion VII concludes the paper.

II. RELATED WORKS

A. Cross-modality Bridging

Cross-modality bridging is the job of pairing visual ap-
pearance with the most accurate concept, and it it becoming
more challenging as the amount of the web images grows
larger.many related works have been proposed to solve the
problem of cross-modality bridging: (1) latent topic model,
[13] propose a visual contexts based discriminative Latent
Dirichlet Allocation framework; [7] introduce a cross-modality
learning approach by jointly minimizing the distance between
the mappings of query and image in the latent subspace,
which can efficiently preserve the inherent structure in each
original space. (2) Middle-level themes learning, [15] propose
a representation using semantic multinomial (SMN) to model
context; [16] further research on local category co-occurrences
in the SMN. (3) Distance metric learning, [17] proposed
crosscategory transfer learning for classification. (4) Semantic
classifier model, [19] introduced object bank (OB), which
encodes the visual appearance and relative location of objects
in images. (5) Deep learning, [20] use the deep convolutional
neural network to classify the images in the ImageNet. [22]
use convolutional neural networks on image regions, recur-
rent neural networks on sentences to generate image region
descriptions. Peng et al. [31]–[33] propose a serious of cross-
modality analysis methods on base of deep learning, including
cross-modal correlation learning, semi-supervised cross-media
feature learning, etc. Although deep model based methods
achieved great success on image understanding, the underlying
mechanism of neural work is still not fully understood. The
cross-modality bridging still needs further research.

B. Transfer Learning

Transfer learning [34] as a new machine learning paradigm
has gained increasing attention lately For now, typical ap-
plication of the transferring learning mainly contains text
classification, image classification, emotional classification,
coordination filtering and artificial intelligence planning and so
on. Dai et al. [35] propose a coclustering based classification
(CoCC) algorithm to learn from the in-domain and apply
the learned knowledge to out-of-domain. Authors [36] also
estimate the initial probabilities under a distribution Dl of one
labeled data set, and then use an EM algorithm to revise the
model for a different distribution Du of the unlabeled test
data for text classification. Gu et al. [37] propose a multi-
task clustering, which performs multiple related clustering
tasks together and utilizes the relation of these tasks to
enhance the clustering performance. [38] used lexical prior
knowledge in the form of domain-independent sentiment-laden
terms and domain-dependent unlabeled data to increace the

effectiveness of real-world sentiment prediction tasks. Inimage
processfields, Dai et al. [39] proposed a translated learning
framework for classifying target data using data from another
feature space. Zhu et al. [34] propose the heterogeneous
transfer learning method for image classification. To bridge
text documents and images, they use tagged images and create
a semantic view for each target image by using collective
matrix factorization technique. Raina et al. [40] present a new
machine learning framework called ”self-taught learning” for
using unlabeled data in supervised classification tasks. Peng
et al. [41] propose a novel hybrid transfer network for cross-
modal common representation learning. Pan et al. [42] pro-
pose a new deep architecture of incorporating the transferred
semantic attributes into the CNN plus RNN framework. In
conclusion, more and more transfer learning work has been
applied to various applications and has achieved remarkable
results in the research. However, the existing algorithms can
not meet the actual application requirements in the era of big
data because of the algorithmic complexity and limited amount
of data.

III. AN INTRODUCTION ABOUT CROSS-MODALITY
BRIDGING DICTIONARY

Cross-modality bridging dictionary is a direct probability
bridge between the visual appearance features and the seman-
tic categories of images. In other words, visual appearances
are interpreted into the probability distribution of semantic
categories. The cross-modality bridging dictionary is a matrix
which bridges the columns of semantic categories and the
rows of visual appearances, and it records the co-occurrences
between the semantic set and the visual set. The learning of
the dictionary is formulated into a multi-task feature learning
problem. The explicit semantic of an image can be calculated
from its visual appearance using the cross-modality bridging
dictionary. In this section, we explain the semantic categories
and structure of the proposed cross-modality bridging dictio-
nary.

A. Image Visual Representation Model

The BOV model is the mostly used method for image visual
representation. It is originated from the bag-of -words method
for information retrieving. BOV model firstly extracts a bunch
of visual appearance descriptors from the local patches of the
image and then computes a compact histogram representation,
which can be used by further applications.

Recently, deep convolutional neural networks, such as
Alexnet, GoogleNet, Inception, VGG, ResNet, is becoming
the main way of feature learning. However, the features from
the output of Deep Networks usually have high semantic than
traditional features. The deep networks need more training
dataset and stronger computing devices.The above demands
bring a high threshold to new research. Moreover, these deep
features are direct for the classification and recognition tasks,
and are limited in the image search task. So here we still use
the traditional visual appearances as the base description for
further learning.
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B. Cross-modality Bridging Dictionary

As shown in Fig. 1, the explicit cross-modality bridging
dictionary records the co-occurrences between the semantic set
and the visual set, where k denotes the local visual appearance
count and m denotes the semantic category count. The dictio-
nary entry is the co-occurrence weight of the corresponding
visual appearance and semantic category.

For example, the corresponding k × m relations between
each pair of the visual set V with k visual appearances and
semantic set S with m categories can be learnt by the explicit
cross-modality bridging dictionary. Each category in S has
k-bin membership histogram and each visual appearance in
V has m-bin membership distribution histogram from the
columns and rows of the dictionary respectively. The learning
procedure of the bridging dictionary is detailed in the next
section.

IV. CROSS-MODALITY BRIDGING DICTIONARY WITH
MULTI-TASK LEARNING

The rows and columns of the explicit visual-semantic dic-
tionary depict the relationship between semantic categories
and visual appearances. The entries of the dictionary are
filled with a multi-task learning algorithm which employs the
Capped − `1 penalty [24]. The co-occurring probability dis-
tribution between visual appearances and semantic categories
is concurrently learnt by multiple tasks. Each task processes
a batch of co-occurring visual appearances, which are learnt
by the above algorithm automatically. Related tasks may share
some common appearances while tasks from different groups
have different batches of visual appearances. The amount of
common visual patterns between related tasks is constrained
by the penalty item. The following is the definition of the
objective function.

J(D) = min
D

 m∑
i=1

1

mni
‖ yi −Xidi ‖2 +γ

k∑
j=1

min(|dj |, θ)


subject to di,j ≥ 0, ∀i, j (1)

where Xi ∈ <ni×k is the feature description matrix of the
i-th category and images, and each row is a sample with
a k-dimensionality vector yi ∈ <ni is the corresponding
labels of images with the i-th category. ni is the number of
samples for the i-th category. The visual-semantic dictionary
D = [d1, · · · ,dm] ∈ <k×m actually consists of the weighted
vector for the m categories. dj is the j-th row of the dictionary
D. ‖ · ‖ denotes the `2-norm, and | · | denotes the `1-norm.
The first term is the least square loss function that measures the
quality of reconstruction. The second term is the regularization
function, which constrains the complexity of weight matrix
D. The parameter γ(> 0) controls the balance between two
terms, which also restricts the dictionary sparsity. θ(> 0) is
a thresholding parameter and controls the inter-impact of the
dictionary.

Theoretically, the formulation of Equ. 2 is very difficult
to solve as it’s a non-convex problem. The optimization
problem can be approximated using an iteration algorithm [28]

Algorithm 1: Cross-modality Bridging Dictionary Learn-
ing

Initialize γ(0)j = γ;
for τ = 1, 2, · · · do

Let Dτ be a feasible solution of the dictionary, the
global objective function can be transferred as
following:

min
D∈<k×m

`(D) + γ
(τ−1)
j

k∑
j=1

min(|dj |, θ)

 (2)

Let `(D) =
∑m
i=1

1
mni
‖ yi −Xidi ‖2, and

γτj = γI(|(D
τ
)j | < θ)(j = 1, · · · , k), where (Dτ )j is

the j-th row of Dτ and I(·) denotes the {0,1}
indictor function.

end

detailed in Algorithm 1. The loss of the objective function
will be gradually minimized as the iteration goes continuously,
and finally reaches an acceptable convergence. The objective
function in Equ. 2 consists of a differential loss term and a
non-differential penalty term. The key sub-problem is solved
with an iterative shrinkage algorithm [43] which builds a
regularization of the linearized differentiable function part of
the objective at each iteration.

Firstly, the following functions are defined for simplifica-
tion:

p(D) :<k×m 7→ <k+, p(D) = [|d1|, · · · , |dk|]T ,

q(v) :<k+ 7→ <+, q(v) =
k∑
j=1

min(vj , θ).
(3)

where [x]+ = max{0, x}, Equ. 2 can be rewritten as,

min
D∈<k×m

{`(D) + γq(p(D))} (4)

Assuming gτ is a sub-gradient of q(v) at v = p(Dτ ), 〈·〉
denotes the inner product, according to the definition of the
sub-gradient, an upper bound of the objective function in
Equ. 2 can also be obtained:

`(D) + γq(p(D)) ≤ `(D) + γq(p(Dτ )) + γ〈gτ , p(D)− p(D)〉
(5)

From the above formulation, one sub-gradient of q(v) at v =
p(Dτ ) can be computed:

gτ = [I(|(D
τ
)1| < θ), · · · , I(|(D

τ
)k| < θ)]T (6)

Next, we define the conjugate function [44] of the concave
function q(v):

q?(u) = inf
v
{uT v− q(v)} (7)

The following theory can be deducted with theory of [45]:

q(v) = inf
u
{vTu− q?(u)} (8)
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Fig. 3. Parameter estimation error ‖D̄ −D‖2,1.

Thus, the objective function can be rewritten as Equ. 4:

min
D,u
{`(D) + γuT p(D)− γq?(u)} (9)

The above minimazation problem can be solved with the block
coordinate descent [46]:
• Fix D = Dτ :

uτ = arg min
u
{uT p(Dτ )− q?(u)} (10)

According to the Danskin’s Theory [45], one feasible
solution of the above equation is the sub-gradient of
q(v) at v = p(Dτ ), i.e. uτ = gτ in Equ. 6.

• Fix u = uτ = [I(|(D
τ
)1| < θ), · · · , I(|(D

τ
)k| < θ)]T :

D(τ+1)
= arg min

D
{`(D) + γ(uτ )T p(D)} (11)

The parameter estimation error is shown in Fig. 3 under the
setting γ = 0.85 × 10−3 and θ = 100 × γ. The convergence
trend can also be seen from Fig. 3, and the error settles
to a small value after about 16 iterations which means a
convergence is reached.

The explicit visual-semantic dictionary D ∈ <k×m is learnt
through the above algorithms. Any image i is firstly repre-
sented using the BOV model, and then marked as xi ∈ <k
where k is the dimensionality of the BOV representation.
Using the inner product, the semantic representation of the
image i can be computed,

SR(i) = xi · D (12)

V. SEMANTIC PROPAGATION

After calculating the semantic representations, the semantic
distances between all images can be further computed. As the
semantic descriptions of the images are a bunch of categories

Algorithm 2: Semantic Propagation
Input: 〈x, y〉: a pair of categories from the transferring

matrix;
ΦisA: the isA relationship of Probase;
Ψ: the synonym set in the Probase;

Output: The semantic category transferring matrix
Ω ∈ <m×m, Ω is a symmetric matrix, and m is
the number of semantic set S in the transferring
matrix;

for τ = 1, · · · ,m do
x=S(τ);
Collect all the super-categories of x from ΦisA as the
set Υx;

for µ = τ, · · · ,m do
y=S(µ);
Collect all the super-categories of y from ΦisA as
the set Υy;

According to the synonym set Ψ, let Υc =
{Υx ∩Υy} indicates the common
super-categories set;

Ω〈x, y〉=max{P (x|Υc
1) · P (y|Υc

1), · · · , P (x|Υc
n) ·

P (y|Υc
n)}, here, n = |rc|0;

end
end

which are normally not independent, it is necessary to learn
the transferring matrix between categories and to improve the
generalization capability of the semantic descriptions.

Firstly, the relations between the categories are modeled
using a probabilistic knowledge base known as Probase [47],
which records isA relations between semantic objects. The
knowledge base is constructed from 2 years of Microsoft Bing
search log and 1.68 billion web pages [48]. For example,
”Camry is a car”, where ”Camry” is a subordinate category,
and ”car” is a superordinate category. In addition, Probase has
other properties:

Conditional probability P (x|z) and P (z|x) are provided
for each isA relation (x isA z) to measure the typicality,
also known as typically scores, which derives from the co-
occurrences:

P (x|z) =
occurrences of (x, z) in Hearst extraction

occurrences of z in Hearst extraction
All possible superordinate categories for any category in the
dictionary are searched in the Probase. Fig. 4 shows two
examples ”Cat” and ”Dog”, which provides the category
distribution of text labels with basic-level conceptualization.
Here, some common measures for conceptualization including
P(c|e), MI, P(e|c), NPMI, PMIk and BLC.

Then, for each category pair in the dictionary, max-pooling
of probability is applied to the common super-category set
which calculates the transferring weight between the category
pair.

At last, the transferring matrix Ω is filled by the complete
traversal of the above step. The whole process of seman-
tic propagation is shown in Algorithm 2 . The transferring
matrix measures the amount of relevancy between different
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Fig. 4. The typical measures for conceptualization including P(c|e), MI, P(e|c), NPMI, PMIk and BLC.

categories. So the semantic propagation re-ranks the semantic
representation based on semantic distance, different from the
traditional visual rank re-ranking model [49].

The primary image semantic representation is calculated
using the Equ. 12, and then the category transferring matrix
Ω is calculated through the semantic expansion. Finally, the
image semantic description is calculated as follows.

Des(i) = SR(i) + SR(i) · Ω, (13)

where the first term is the primary semantic description of the
image i derived from the explicit visual-semantic dictionary,
while the second term is from the transferring of semantic
categories.

Our semantic representation describes the image using the
probability distribution of categories, and the cosine function

can be used to serve as the image semantic distance metric.

Simcosine(A,B) =
|A ·B|
‖A‖ · ‖B‖

=

∑m
i=1Ai ×Bi√∑m

i=1(Ai)2 ×
√∑m

i=1(Bi)2

(14)

VI. EXPERIMENTS

Our model is evaluated with public benchmarks on three
traditional understanding tasks: large scale semantic image
search, object and scene recognition.

Database: (1)ILSVRC2010 [50], which contains 1000 cate-
gories and 1,461,406 images. (2) Caltech-256 [51], which has
256 categories and 29,780 images with each category contains
at least 80 images. (3) Scene-15 [52], has 15 categories and
4485 images with an average of 200-400 images for each
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Fig. 5. Comparisons of different methods using MAP with different scale of
image database.

category. (4) SUN397 [53], consists of 397 categories and
108762 images. (5) Flickr600k, which are collected from the
Flickr to function as the distracters.

A. Large Scale Semantic Image Search

The effectiveness of our method is validated
with two-million-image-size large scale databases
(ILSVRC2010+Flickr600k).

Comparison Methods: (1) The BOV model [54] with 0.2
million visual words is set as the baseline. (2) SoftBOV [55] is
a revised version of BOV with descriptors encoded with soft
assignment of 4 nearest neighbors. (3)VLAD [56] derives from
Fisher kernel and is a state-of-the-art method. Its parameter
is set the same as [56]. (4) Vicept [57] adopts a mixed-
norm regularization learning. (5) Object Bank (OB) [19] is
a category detector using semantic descriptions. (6) The 16
layers VGG network [58] is pretrained on ImageNet dataset.
We adopt the Adam to optimize the model in an end-to-end
manner. Learning rate is scheduled as 10−3 and a staircase
weight decay is applied after 10 epochs. β1, β2 in Adam are
set to 0.8 and 0.999. We fix the VGG network at the beginning
and fine-tune it after 20 epochs with a relatively small learning

rate 10−5. We set the length of candidate glimpse sequence
T = 10 and the number of sampling times in emission
indicator K = 4, which are learned through cross-validation.
(7) Our bridging weight model using only explicit visual-
semantic dictionary (BW) with parameters γ = 0.85 × 10−3

and θ = 100× γ obtained by the cross-validation. (8) Further
add the semantic propagation to BW (BW+SP).

For image retrieving, the mean average precision (MAP)
is chosen as the evaluation metric following [54]–[56].
Query images are 1000 representative images selected from
ILSVRC2010. The precision-recall curve is drawn for each
query and the average precision (AP) is calculated by summing
the area under the curve. MAP is the average of APs from all
the queries.

Fig. 5 shows the results of the comparison methods with
different scale datasets from ILSVRC2010. Several observa-
tions can be found: first, our two methods (BW and BW+SP)
outperform classical BOV and SoftBOV models with higher
MAPs, which benefit from the strong cross-modality bridging
dictionary learning and the robust knowledge-based semantic
propagation. Second, compared to the state-of-the-art methods
VLAD and OB, MAP values are also boosted to 9.3% and
2.1% by our methods, which can be attributed to the adoption
of the multi-task learning to approximate the optimal solution.
Third, compared with traditional semantic description (Object
Bank), our proposed BW+SP has a significant improvement to
prove its semantic representation power. Moreover, compared
with the popular deep feature VGG16, our method is not as
good as VGG16 in the small datasets, but still has a better
performance in the large scale dataset (the number of images
is more than 1 million). In the real-world applications, the
processing ability on the large scale data plays the more
important role. Four, through the comparison of BW and
BW+SP, the consideration of the relevancy between categories
benefits the description and the semantic propagation improves
the performance. Fifth, the retrieval performance decreasing
rate of our methods is slower than other approaches as the
image number scales, which means that the proposed model
is robust and scalable.

B. Object Recognition on Caltech-256

Comparisons Methods: (1) Binary SVM (BSVM) [59]
is a one-v.s.-all classification model and we train the SVM
classifiers for each categories with 50 positive images and
two hundred negative image; (2) TinyImage [60] is based on
nearest neighbor voting. The images are firstly down-sampled
to 32×32, and the votes are gathered from the top-100 nearest
neighbors; (3) Supervised Multi-class Labeling (SML) [61]
uses the original setting. Images are represented by the bags
of localized features. Gaussian mixture model consists of 64
separately trained components; (4) KSPM [51], spatial pyra-
mid matching with kernel SVM; (5) Object Bank (OB) [19];
(6) LSS [62], low-dimensional semantic spaces with weak
supervision; (7) S3R [63], sub-semantic space representation;
(8) SMN [15]; (9) SR-LSR [14]; (10)FV [18], 128K-dimension
Fisher Vector, where we use only SIFT descriptors and the case
where we use both SIFT and LCS descriptors (again with a
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TABLE I
COMPARISON WITH RELATED WORK ON THE CALTECH-256

Methods Average Precision
BSVM [59] 0.290

TinyImage [60] 0.235
SML [61] 0.355

KSPM [51] 0.328
ObjectBank [19] 0.391

LSS [62] 0.334
S3R [63] 0.435
SMN [15] 0.394

SR-LSR [14] 0.482
LDR [21] 0.456

FV(SIFT) [18] 0.474
FV(SIFT+LCS) [18] 0.494

BW 0.477
BW+SP 0.495

simple weighted linear combination); (11)LDR [21], which is
trained on 1.2 million images of ImageNet; (12) The proposed
method, BW and BW+SP.

Table I lists the average precision of different approaches
on the Caltech-256 database. We can find the following con-
clusions, first, the proposed BW+SP approach outperforms the
KSPM [51] by about 6.7%, which demonstrates the usefulness
of visual-semantic bridging. Second, compared with BW,
which is without the knowledge-based semantic propagation,
the BW+SP method has a further precision improvement.
This means the semantic propagation is necessary. Third,
BW+SP model outperforms the state-of-the-art semantic-based
method SR-LSR [14], which justifies the superiority of our
method. Four, compared with the traditional state-of-the-art
visual feature FV(SIFT) and FV(SIFT+LCS) [18], our method
is comparable with these, which benefit from the use of
semantic propagation. Fifth, our BW+SP approach has a 3.9%
performance promotion than the deep network LDR [21], and
this verify the effectiveness of the proposed method.

C. Scene recognition on SUN397

Scene recognition is an important image understanding task,
and it can be used in plenty of real-world applications, such
as automatic driving. The performance of scene recognition
on SUN397 is evaluated in this subsection.

Comparisons Methods: (1) Binary SVM (BSVM) [59]; (2)
Object Bank (OB) [19]; (3) LSS [62]; (4) SR-LSR [14]; (5)
EMFS [16]; (6) LDR [21] ;(7)FV [18], where we use only
SIFT descriptors and the case where we use both SIFT and
LCS descriptors; (8) The proposed method, BW and BW+SP.

The result of scene recognition on the SUN397 dataset
is shown in Table II. Three observations can be found as
follows, first, compared with the classical semantic-based
description ObjectBank [19] and SR-LSR [14], our method
has a 10.7% and3.7% accuracy improvement, which show the
strong semantic representation power of the proposed method.
Second, compared with the traditional state-of-the-art visual
feature FV(SIFT), FV(SIFT+LCS) [18] and the BW method
(without semantic propagation) , our method also achieve a
better performance, which benefit from the use of semantic
propagation. Third, our BW+SP approach has a accuracy

TABLE II
COMPARISON WITH RELATED WORK ON THE SUN397

Dataset Methods Accuracy(%)
BSVM [59] 31.2

ObjectBank [19] 37.6
LSS [62] 34.4

SR-LSR [14] 44.6
SUN397 EMFS [16] 40.7

LDR [21] 42.6
FV(SIFT) [18] 43.3

FV(SIFT+LCS) [18] 47.2
VGG16 [58] 48.2
VGG16+SP 49.1

BW 43.6
BW+SP 48.3

promotion than the deep network LDR [21] , and it has a
comparable performance with the deeper network VGG16
[58], thus this verify the robust semantic consistency represen-
tation of our model. Moreover, we also extend our semantic
propagation (SP) to VGG16 network, which brings a 0.9%
performance improvement. This also prove the significance
and expandability of the proposed semantic propagation.

D. Scene recognition on Scene15

In this subsection we evaluate the performance of different
methods on Scene15 at the scene recognition task.

Comparisons Methods: (1) Binary SVM (BSVM) [59];
(2) KSPM [51]; (3) Object Bank (OB) [19]; (4) LSS [62]; (5)
SMN [15]; (6) SR-LSR [14]; (7) EMFS [16]; (8) LDR [21];(9)
VGG16 [58] (10) The proposed method, BW and BW+SP (the
BW with semantic propagation).

TABLE III
COMPARISON WITH RELATED WORK ON THE SCENE15

Dataset Methods Accuracy(%)
BSVM [59] 68.8
KSPM [51] 80.4

ObjectBank [19] 80.9
LSS [62] 72.1
SMN [15] 71.7

Scene15 SR-LSR [14] 86.1
EMFS [16] 85.7
LDR [21] 84.2

VGG16 [58] 88.4
BW 87.2

BW+SP 87.5

The result of scene recognition on the Scene15 is shown in
Table III. Through the comparisons, we can find the following
views. First, compared with the semantic-based description
methods, such as ObjectBank [19] and SR-LSR [14], our
method has a better accuracy improvement, which show
the strong semantic representation power of the proposed
method. Second, compared with the traditional multi-task
learning methods, KSPM [51], LSS [62] and SMN [15], our
BW+SP model has a at least 6.6% performance promotion,
and this prove the effectiveness of the multi-task learning
with Capped penalty. Third, compared with the BW method
(without semantic propagation) , our BW+SP method achieve
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Fig. 6. Paremeter discussion of γ and θ at the 1 million image search task.

a near accuracy, which indicates that there is weak semantic
relationship among different scenes in the Scene15. Four,
compared with the deep networks, i.e. LDR [21] and VGG16
[58], our method has a higher accuracy than the LDR [21],
but it is not as good as the VGG16 method. This results from
the deeper network structure of VGG16.

E. Parameter Discussion

Here we discuss the impact of parameters γ and θ in the
Equ. 2 in the large scale image search (1 million images). For
the γ, we evaluate the different values, while for the θ, we set
θ = 10 × γ, θ = 100 × γ and θ = 1000 × γ according
to the experiences. Fig. 6 shows the variation tendency of
MAP under the different γ and θ. First, as to the γ, With
it becomes larger, the MAP first has some promotion, and
then begins to weaken. Moreover, the above variation tendency
keep similar under different θ. Second, as to the θ, according
to the experiences, the θ usually is set to the times of γ. We
can find the MAP is better when the θ = 100× γ, and when
the θ = 1000× γ, the performance declines very much.

VII. CONCLUSION

This paper introduces an explicit visual-semantic dictionary
model for cross-modality understanding. where images are
represented as the probability distribution of semantic cate-
gories. The dictionary is learnt with multi-task learning, which
models the co-occurrence and discriminative patterns within
and between categories. Further, we propose a knowledge-
based semantic propagation to improve the generalization
capability of the semantic representation as the scale goes
larger.
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