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Abstract. Residual Networks (ResNet) and Dense Convolutional Net-
works (DenseNet) have shown great success in lots of high-level com-
puter vision applications. In this paper, we propose a novel network
with Local Dense and Adaptive Global Residual (LD+AGR) frame-
works for fast and accurate image denoising. More precisely, we com-
bine local residual/dense with global residual/dense to investigate the
best performance dealing with image denoising problem. In particular,
local/global residual/dense means the connection way of inner/outer
recursive blocks. And residual/dense represents combining layers by sum-
mation/concatenation. Furthermore, when combining skip connections,
we add some adaptive and trainable scaling parameters, which could
adjust automatically during training to balance the importance of differ-
ent layers. Numerous experiments demonstrate that the proposed net-
work performs favorably against the state-of-the-art methods in terms
of quality and speed.

Keywords: Adaptive global residual - Local dense + Image denoising

1 Introduction

Image denoising, which aims to recover a clear image from its degraded obser-
vation caused by noise contamination, is a classic and fundamental problem
in computer vision [12-14]. Since image denoising is highly ill-posed, it is very
challenging to achieve satisfactory results.
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Numerous image denoising methods have been proposed [1-4,9,21-23,26] in
recent years with fantastic advancements. Most denoising methods are based on
nonlocal self-similarity (NSS) priors [1,3,4,18,24]. NSS refers to the fact that a
local patch often has many nonlocal similar patches across the image. Nonlocal
means (NLM) [1] could be considered as a seminal work, bringing the new era
of denoising by finding the NSS priors within a search window sliding across
the image. It obtained a denoised patch by weighted averaging all other patches
in the search window. Another famous benchmark, named block-matching and
3D filtering (BM3D) [4], remarkably combined NSS with an enhanced sparse
representation in transform domain. It contained two general procedures: group-
ing and collaborative filtering. First, forming a 3D array by stacking together
similar blocks. Second, obtaining 2D estimates of grouped blocks after perform-
ing collaborative filtering of the group. Instead of transforming images to other
domains, low rank matrix approximation methods also attracted great attention
in recent years. Representative and significant low-rank method was weighted
nuclear norm minimization (WNNM) [9]. Based on the general prior knowl-
edge that the larger singular values of the patch matrices of original image are
more important than the smaller ones, WNNM achieved great success in image
denoising.

Recently, methods based on neural networks [5-7,11,15,17,19] have shown
significant success in many computer vision tasks, especially in image classifica-
tion. Among these methods, Residual Networks (ResNet) [11,25] and Dense Con-
volutional Networks (DenseNet) [15] are attracting the most attention. Inspired
by such achievements, we try to investigate the properties of the two architec-
tures: residual and dense. In this paper, we not only combine the two elements
in terms of local /global way, but also adding adaptive parameters to keep a good
balance when combining various skip connections (Fig.1).

) Residual unit in [11]. ) Dense unit in [15].

Fig. 1. Comparisons of residual/dense units. 3 X 3 represents a convolutional layer
with kernel size of 3 x 3. @ indicates the summation way of connecting. As shown in
Fig. 3(b), many lines focusing on one point is the concatenation way for combination.
Lines with the same color share the same value. The following symbols have the same
meanings. (Color figure online)

2 Discussion of ResNet/DenseNet

ResNets are usually composed of lots of residual blocks, which only contains one
skip connection and two convolutional layers. Such a simple residual architecture
is easy to train. However, these units lack enough power to transmit sufficient
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information merely through cascading, leading to the lower ability of the whole
network. Especially when dealing with image processing problems, these net-
works are not strong enough to extract features from massive data. In addition,
it is likely to lose useful information during the process of deep-layers of delivery
without any effective connection.

In contrast, DenseNets have plenty of skip connections in one dense block
and the dense block is diverse to be able to simulate complex functions, which
is beneficial to learn features. However, one big problem is that such powerful
networks lack efficient contacts among outputs of each block. This will increase
the time consumption of training. What is worse, no connections between blocks
will cause some distortion when transmitting features.

Taking into account the shortcomings owned by single ResNet /DenseNet sep-
arately mentioned above, we are going to combine the two elements in two ways:
local and global, which will be explained completely in the following sections.

3 Local Residual/Dense and Global Residual/Dense
Networks

3.1 Local Residual and Global Residual Networks (LR+GR)

As shown in Fig.2, both the local recursive block and global connecting way
are the residual manner. So we name this style of framework as local resid-
ual and global residual networks (LR+GR). Normally, the first and last 3 x 3
convolutional layers are usually used for extracting features and reconstruction
separately. In detail, this network is composed of three residual blocks, three
inner and three outer identity skip connections, and two convolutional layers.
In particular, we use parametric rectified linear unit (PReLU) [10] as activation
function in all networks, which are omitted in the figures for simplicity.

Residual Block 1 Residual Block 2 Residual Block 3

Fig. 2. Framework of local residual and global residual network.

3.2 Local Residual and Global Dense Networks (LR+GD)

From Fig. 3, we can see that the inner connecting way of each block is residual
while the global manner is dense. Similarly, this kind of architecture is named
as local residual and global dense networks (LR+GD). Particularly, there are
three residual blocks and one summation skip connection in each unit. From
the overall point of view, it uses dense style and there are six concatenating
shortcuts.
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Residual Block 1 Residual Block 2 Residual Block 3

Fig. 3. Framework of local residual and global dense network.

3.3 Local Dense and Global Residual Networks (LD+GR)

If the recursive units are dense style while the global way is residual skip connec-
tion, we would call this framework as local dense with global residual network
(LD+GR), as shown in Fig.4. In particular, there are two dense blocks, two
residual shortcuts and two convolutional layers in this network, and each block
contains three convolutional layers and three dense skip connections.

Dense Block 1 Dense Block 2

‘; Ed= Ed

Fig. 4. Framework of local dense and global residual network.

» Output y

3.4 Local Dense and Global Dense Networks (LD+GD)

Local dense with global dense networks (LD+GD) represent such frameworks
that both inner and outer connections of blocks are dense, as shown in Fig. 5.
To be specific, there are three concatenating lines in each dense unit and three
skip connections in a global view.

Dense Block 1 Dense Block 2

s Output y

3x3 3x3

Fig. 5. Framework of local dense and global dense network.

4 Local Residual/Dense and Adaptive Global Residual
Networks

4.1 Local Residual and Adaptive Global Residual Networks
(LR+AGR)

Based on the framework of LR+GR, adding some trainable variables before
summation, the network will become local residual and adaptive global resid-
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ual network (LR+AGR). Seeing Fig.6, there are three extra pairs of scaling
parameters compared to the above LR4+GR in Fig. 2.

Residual Block 1 Residual Block 2 Residual Block 3
Input x Output y

e P @ P e
ay a3

o

Fig. 6. Framework of local residual and adaptive global residual network.

4.2 Local Dense and Adaptive Global Residual Networks
(LD+AGR)

Similarly, on the basis of LD+GR in Fig.4, if we add some adaptive scaling
parameters at the output of each dense block to balance the importance of each
part automatically, the framework will become local dense and adaptive global
residual network (LD+AGR), as shown in Fig.7. We could see two pairs of
scaling parameters after two dense blocks.

Dense Block 1 Dense Block 2
Input x ’ nop » B Output y
R e R el LT ‘i

Fig. 7. Framework of local dense and adaptive global residual network.

4.3 Analysis and Discussions

In order to investigate more properties of the four basic frameworks and two
adaptive ones mentioned above, we conducted the image denoising experiments
using these networks. The training process has been recorded in Fig.8(a).
We controlled all the variables the same except the frameworks. As iteration
increases, they are going to converge. Clearly, LD+AGR has the fastest con-
vergence speed and achieves the best value at last. The following are LD+GD,
LR+AGR, LD+GR, LR+GD, and LR+GR. Compared to LD4+GR, LD+AGR
has superior performance, which fully demonstrates the importance of introduc-
ing the adaptive and trainable scaling parameters.

5 The Proposed LD+AGR Networks for Image Denoising

5.1 Architecture

Referring to the framework of LD+AGR, we build the improved network, as
shown in Fig.9(b). It is composed of six dense blocks and six adaptive residual
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Fig. 8. (a) PSNR(dB) comparisons of six frameworks during training. (b) Adaptive «
and f of different output layers in our LD+AGR.

skip connections. Focusing on one dense block (See Fig.9(a)), there are six 3 x 3
convolutional layers for learning features continuously, one 1 x 1 convolutional
layer for decreasing the dimension of feature mappings, and fifteen dense lines for
concatenating features together. The biggest difference is that we introduce two
adaptive scaling parameters outside each dense block to adjust the importance
of the first output yo and the latter output y;(: = 1,...,6). As for the number
of convolutional layers in each dense block and total blocks, we choose seven
(including the 1 x 1 convolutional layer) and six separately in this paper.

5.2 Adaptive Parameters

We trained three models for image denoising with noise level o = 25, 50, and
75 using our LD+AGR framework. The learned parameters a and g of different
layers can be observed in Fig.8(b). Intuitively, all as are much bigger than fs,
which means the original output yo plays a more important role than latter
output layers. Moreover, all as change rapidly while all s shake slowly and
softly. But the last output ys seems to be more important than the other five
ones. We also conducted such experiments on the condition that all as and (s
are 0.5, but the denoising performance is far worse than the adaptive ones.

6 Experiments

In this section, we compare the proposed LD+AGR image denoising model
with several state-of-the-art denoising methods, including BM3D [4], EPLL [26],
WNNM [9], MLP [2], and PCLR [3]. The implementations are all from the pub-
licly available codes provided by the authors.

! The source code of the proposed method will be available after this paper is pub-
lished.
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X1 Y1

(a)

e 2 Pig.. Dense Block 6

(b)

Fig. 9. (a) Dense block of our network. (b) Architecture of our LD+AGR networks.
Grey circles represent 3 X 3 convolutional kernels, and white circle is 1 X 1 convolutional
kernel.

Fig. 10. The 14 test images (grey, 256 x 256). From left to right: Baboon, Barbara,
Boat, Couple, Hill, Lena, Monarch, R.R.Hood, Pentagon, Starfish, Cameraman, Man,
Paint-full, Parrots.

6.1 Training Details

We use Berkeley Segmentation Dataset BSD500 [20] as the training set and 14
widely used test images as the testing set (It can be found in Fig. 10). To increase
the training set, we segment these images to overlapping patches of size 50 x 50
with stride of 10. We use the deep learning library Tensorflow on an NVIDIA
GTX TITAN X GPU with 3072 CUDA cores and 12 GB of RAM to implement
all operations in our network. The filter weights are initialized using the “Xavier”
strategy [8] and biases are generated by tf.constant initializer using Tensorflow.
We use Adam [16] algorithm to optimize the loss function of Mean Square Error

(MSE).

6.2 Quantitative Results

We record PSNR comparisons to other state-of-the-art algorithms on noise level
0=25, 50, and 75 in Table 1. On the whole, our LD4+AGR has the overwhelming
superiority over the other methods on average, especially when o= 25 and 50,
the superiority can reach up to 0.33 dB and 0.36 dB over the second best methods
on PSNR.

From Table1, on average, we have the best results on three noise levels.
Concretely, among 14 testing images, there are 13, 14, and 8 reconstructed images
by our methods achieve the best performance. Hence, no matter on the whole
or individuals, our LD+AGR shows tremendous advance over other methods in
terms of PSNR.
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Table 1. PSNR (dB) results with different o over testing set (See Fig. 10). The best
result for each image is highlighted.

> = 25
Mothoy Imagelp . hoon|Barbara| Boat [Couple| Hill |Lena [Mona.|R.R.H.|Pent.|Star. |C.man| Man [Paint.[Parrots| Ave.
BM3D[4] 26.51 | 29.54 |28.42| 28.44 |29.06|30.36|28.88| 30.73 |28.21|28.71| 29.08 |28.43|29.03| 31.55 |29.07
EPLL[26] 26.68 | 28.91 [28.72 28.42 [29.03|30.29(29.34| 30.63 |28.07|28.97| 29.25 |28.73|29.28| 31.59 [29.14
WNNMI9] | 26.81 | 30.20 |28.77| 28.64 |29.29(30.87|29.84 | 31.22 |28.72(29.54| 29.64 [28.73(29.51| 32.12 |29.56
MLP[2] 26.87 | 29.14 |28.85| 28.75 [29.31|30.79(29.62| 30.93 |28.23]29.26| 29.30 |28.80|29.65| 32.10 [29.40
PCLR([3] 26.75 | 29.73 |28.88| 28.73 [29.30|30.78|29.75| 30.98 |28.42(29.35| 29.68 [28.74|29.58| 32.01 [29.48
LD+AGR | 27.06 | 29.52 [29.27]|29.22 [29.53|31.22/30.16| 31.55 [28.77|30.09|29.95|29.10|30.18| 32.64 |29.88
5 =50
Method Imagelp, boon[Barbara| Boat |Couple| Hill |Lena [Mona.|R.R.H.|Pent.|Star. |C.man| Man [Paint.|Parrots| Ave.
BM3D[4] 34.07 | 26.33 |25.25| 25.17 |26.22|27.05|25.62| 27.75 | 25.35|25.44| 25.08 |25.55|25.66| 28.32 |25.08
EPLL[26] 24.13 | 26.02 [25.48| 25.09 [26.14[26.93|25.76 | 27.58 |25.02|25.50| 26.04 |25.59|25.88| 28.00 [25.94
WNNM[9] | 24.21 | 26.64 |25.54| 25.27 |26.35(27.47|26.32 | 28.13 |25.72(26.03| 26.45 |25.71[25.97| 28.71 |26.32
MLP[2] 24.31 | 26.41 |25.68| 25.49 [26.47|27.54|26.24 | 28.15 |25.48|25.92| 26.37 [25.87|26.21| 29.01 [26.37
PCLR[3] 24.12 | 26.44 |25.57| 25.27 |26.26|27.38|26.25 | 28.02 |25.34|25.87| 26.60 |25.74|26.05| 28.70 |26.26
LD+AGR | 24.52 | 26.80 [26.07| 25.78 [26.67|27.81|26.88| 28.64 |25.83|26.48/26.77|26.03|26.60| 29.35 [26.73
5 =75
Mems—8¢Baboon[Barbara Boat [Couple| Hill | Lena [Mona [R.R.H |Pent.|Star. [C.man| Man [Paint [Parrots| Ave.
BM3D[4] 33.05 | 24.39 |23.61| 23.56 |24.64|25.20|23.69 | 25.96 |23.85|23.71| 24.17 |23.99|23.81] 26.33 |24.28
EPLL[ZG] 22.94 24.04 [23.77| 23.44 |24.50(24.97(23.64 | 25.84 |23.45(23.76| 24.21 [24.07|23.89| 26.11 |24.19
WNNM[9] | 23.18 | 24.70 |23.87| 23.65 |24.74[25.72|24.31| 26.19 |24.21|24.13| 24.60 |24.10[24.07| 26.69 |24.58
MLP[2] 23.30 | 24.76 |24.11|23.92 [24.97(25.79|24.40| 26.41 |24.13|24.16| 24.67 [24.39|24.40| 27.08 [24.75
PCLR[3] 22.99 | 24.58 |23.87| 23.64 [24.64|25.52|24.28| 26.28 |23.79(24.01| 24.78 [24.12|24.15| 26.74 |24.53
LD+AGR | 23.33 | 24.76 [24.30| 23.83 |24.94[25.76|24.83| 26.69 |24.21|24.32/24.98(24.20(24.39| 27.05 |24.83

6.3 Visual Quality

As shown in Fig. 11, similarly, our LD+AGR has the best visual quality com-
pared to other methods. Especially, in the green and red windows, it is easy
for us to recognize lines and shapes of the starfish in our result. Even with the
noise level o =75, our method can still recover the most valuable information,
which can be found in Fig. 12. In the green window, the head of butterfly in our

WNNM [9]/26.03 MLP [2]/25.92 PCLR [3]/25.87 LD+AGR /26.48

Fig.11. Sample image denoised results on Starfish with state-of-the-art methods
(¢ = 50). (Color figure online)



Image Denoising with Local Dense and Adaptive Global Residual Networks 35

WNNM [9]/24.31 MLP [2]/24.40 PCLR [3]/24.28 LD+AGR /24.83

Fig. 12. Sample image denoised results on Monarch with state-of-the-art methods (o =
75). (Color figure online)

recovered image is distinct from others. Likewise, in the red block, our pattern is
also much sharper than the others. In a word, from the view of visual quality, our
LD+AGR performs better than other state-of-the-art image denoising methods.

6.4 Running Time

We profile the time consumption of all the methods in a Matlab 2015b envi-
ronment using the same machine (an NVIDIA GTX TITAN X GPU with 3072
CUDA cores and 12 GB of RAM) in Table 2. Obviously, based on the adaptive
networks, our method has enormous advantage than all the traditional algo-
rithms.

Table 2. Average running time (s) for one image with different noise level o over
testing set (See Fig. 10). The best result for each dataset is highlighted.

o BM3D [4] | EPLL [26] | WNNM [9] | MLP [2] | PCLR [3] LD+AGR
o =25 41.78 46.29 160.71 2.22 69.68 | 1.25
o =50 |44.08 45.17 114.96 2.18 124.71 | 1.25
o =75 | 56.47 45.59 180.36 2.17 130.79 | 1.25
Average | 47.44 45.68 152.01 2.19 10839 | 1.25
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Conclusions

In this paper, we address the image denoising problem via a local dense and
adaptive global residual (LD+AGR) network which learns high effective fea-
tures to reconstruct the latent clean images from the corresponding noisy ones.
Moreover, we introduce adaptive scaling parameters to balance the importance
of different outputs. Experimental results fully illustrate the effectiveness of the
proposed method, which outperforms state-of-the-art methods by a considerable
margin in terms of PSNR. Noticeable improvements can also visually be found
in the reconstruction results.
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