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Abstract

LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both
experimental technology and computational prediction algorithm, thousands of lncRNA have been identified in eukaryotic
organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated
that lncRNAs are involved in almost the whole life cycle of cells through different mechanisms and play important roles in
many critical biological processes. Therefore, it is not surprising that the mutations and dysregulations of lncRNAs would
contribute to the development of various human complex diseases. In this review, we first made a brief introduction about
the functions of lncRNAs, five important lncRNA-related diseases, five critical disease-related lncRNAs and some important
publicly available lncRNA-related databases about sequence, expression, function, etc. Nowadays, only a limited number of
lncRNAs have been experimentally reported to be related to human diseases. Therefore, analyzing available lncRNA–dis-
ease associations and predicting potential human lncRNA–disease associations have become important tasks of bioinfor-
matics, which would benefit human complex diseases mechanism understanding at lncRNA level, disease biomarker detec-
tion and disease diagnosis, treatment, prognosis and prevention. Furthermore, we introduced some state-of-the-art
computational models, which could be effectively used to identify disease-related lncRNAs on a large scale and select the
most promising disease-related lncRNAs for experimental validation. We also analyzed the limitations of these models and
discussed the future directions of developing computational models for lncRNA research.
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LncRNA

According to the well-known central dogma of molecular biol-
ogy, genetic information is stored in protein-coding genes [1–6].
Therefore, non-coding RNAs (ncRNAs) have been considered to

be transcriptional noise for a long time until more and more evi-
dences showed up and challenged this traditional view [7].
Protein-coding genes only account for approximately 1.5% of
the whole genome, which means more than 98% of the human
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genome does not encode protein sequences [8]. Furthermore,
the proportion of non-protein-coding sequence correspondingly
increases along with the complexity of organisms [9]. Recently,
increasing evidences have revealed that ncRNAs play a critical
role in multiple fundamental and important biological proc-
esses [10]. Based on transcript lengths, ncRNAs can be further
divided into small ncRNAs and long ncRNAs (lncRNAs).
LncRNAs are a major class of important heterogeneous ncRNAs
with the lengths more than 200 nucleotides [11–13].

Recently, lncRNAs have attracted much attention from re-
searcher because increasing evidences indicated that lncRNAs
play critical roles in multiple biological processes based on di-
verse underlying mechanisms, such as epigenetic regulation,
chromatin remodeling, gene transcription, protein transport,
trafficking, cell differentiation, organ or tissue development,
cellular transport, metabolic processes and chromosome dy-
namics [14–20]. Accumulating evidences have further demon-
strated that mutations and dysregulations of these lncRNAs are
associated with the development and progression of various
complex human diseases [21], such as prostate cancer [22, 23],
colon cancer [24], lung cancer [25], Alzheimer’s diseases (AD)
[26], cardiovascular diseases [27], leukemia [28], diabetes [29],
AIDS [30] and neurodegeneration diseases [31]. For instance,
lncRNA HOTAIR, PCA3 and UCA1 have been treated as potential
biomarkers of hepatocellular carcinoma recurrence [32], pros-
tate cancer aggressiveness [33] and bladder cancer detection, re-
spectively [34, 35]. However, the general features of most
lncRNAs, such as structure, transcriptional regulation, func-
tions and molecular mechanisms in multiple biological proc-
esses or various diseases, still largely remain elusive [15, 16].

LncRNA discovery and classification

With the emergence of sequencing technologies and computa-
tional algorithms for lncRNA discovery, more and more
lncRNAs are being identified and characterized at a rapid pace
in eukaryotic organisms ranging from nematodes to humans
[36–39]. For example, the discoveries of two well-known
lncRNAs, H19 and X-inactive-specific transcript (Xist), could be
traced back to the early 1990s based on the traditional gene
mapping [40–44]. Guttman et al. [45] developed a new genome-
wide approach and identified 1600 novel large intervening non-
coding RNAs (lincRNAs) across four mouse cell types using
chromatin marks for promoter regions and gene bodies and
gene expression data. Furthermore, they developed a functional
genomics approach to assign putative functions to each
lincRNA and demonstrate various critical functional roles of
lincRNAs [45]. Cabili et al. [46] presented an integrative ap-
proach to build the human lincRNA catalog including more
than 8000 lincRNAs across 24 different human cell types and tis-
sues based on chromatin marks and RNA-sequencing data and
characterize them by more than 30 properties, such as their se-
quence, structure and orthology features. A large number of
lncRNAs have been recorded in biological databases such as
lncRNAdb [39, 47], NONCODE [48–52], PLncDB [53] and
LNCipedia [37, 38]. For example, there are 487 164 lncRNA tran-
scripts and 324 646 lncRNA genes from 16 species (such as
human, mouse, cow and rat) in NONCODE [48–52].

Increasing evidences reveal that human transcriptome is
much more complex than what we thought. Based on their dif-
ferent features, lncRNAs could be further divided into the differ-
ent subgroups as follows [16]: LincRNA [45, 54], long intronic
ncRNA [55, 56], transcribed pseudogene [57, 58], transcribed
ultraconserved region [28], natural antisense transcript (NAT)

[59–61], promoter-associated long RNA [62], promoter upstream
transcript [63], repetitive element-associated ncRNA [64–66] and
enhancer-like ncRNA [7, 67]. LncRNAs could also be classified in
the following three ways according to their positions relative to
protein-coding genes [68, 69]: sense or antisense (classified ac-
cording to whether the lncRNAs are on the same strand of the
nearest protein-coding genes or not) [70], divergent or conver-
gent (classified according to in which way the lncRNAs are tran-
scribed compared with the nearest protein-coding genes) [12]
and intronic or intergenic (classified according to the lncRNAs’
relative locations to protein-coding genes: inside the introns of
a protein-coding gene or in the interval regions between two
protein-coding genes) [12, 71, 72].

LncRNA function

In the past, the functionality of lncRNAs caused much contro-
versy (even regarded as transcriptional noises) because of their
relatively less cross-species conservation, lower expression lev-
els and higher tissue specificity than protein-coding genes [69,
73, 74]. Furthermore, experimental results indicated that
lncRNAs tend to have longer, but fewer, exons [11, 46, 75]. With
the rapid development of biological technology and computa-
tional models, a growing number of evidences suggest that
lncRNAs are involved in almost the whole life cycle of cells
through different mechanisms [15, 76]. LncRNAs are confirmed
to play diverse and important roles in many fundamental and
critical biological processes, including transcriptional and post-
transcriptional regulation, epigenetic regulation, organ or tissue
development, cell differentiation and apoptosis, cell cycle con-
trol, cellular transport, metabolic processes, chromosome dy-
namics, etc. [3, 18, 77–82].

More and more examples indicated that lncRNAs take the
role of signal, decoy, scaffold and guide capacities at almost
every stage of gene expression [83]. In addition, considering the
fact that lncRNA is large and has a complex secondary and ter-
tiary structure, recent studies also revealed that lncRNAs could
bind to DNA, RNA or protein and modulate their functions [7].
Specially, Fendrr, an important and essential lncRNAs for heart

and body wall development in the mouse, could interact dir-
ectly with DNA [84]. It has been observed that the functional
properties of lncRNAs are mainly related to their secondary
structures [79]. Furthermore, the chromatin modification could
be caused by the transcription-independent and transcription-
dependent mechanisms of lncRNAs [85–87]. LncRNAs could also
be involved in epigenetic silencing by recruiting chromatin re-
modeling complexes [86]. It is further observed that some
lncRNAs usually interact with more than one chromatin-
modifying complex [86]. For example, molecular investigations
revealed that lncRNAs such as Kcnq1ot1, Airn, Xist and HOTAIR
are associated with chromatin remodeling complexes such
as Polycomb repressive complexes 1 and 2 (PRC1 and PRC2)
[86, 88–96]. In addition, the mutations and dysregulations of
lncRNAs are confirmed to be associated with diverse human
diseases [83].

Although there are a large number of annotated lncRNAs,
only a few lncRNAs have been extensively studied for the iden-
tification of their possible functions and the possible molecular
mechanism underlying [40, 45]. Therefore, it is a big challenge
for both experimental researches and computational biology to
accurately identify the functions of lncRNAs [45].
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LncRNA–disease associations

Considering the various functions of lncRNAs, it is no surprise
to find that the mutations and dysregulations of lncRNAs are
closely related to the development and progression of many
kinds of human diseases [2, 16, 69, 82, 97–99], such as breast
cancer [21, 100], prostate cancer [22, 23], hepatocellular cancer
(HCC) [101], colon cancer [24], bladder cancer [34], thyroid cancer
[102], lung cancer [25, 103], ovarian cancer [104], AD [26], dia-
betes [29, 105] and AIDS [30]. Based on the comprehensive
lncRNA–disease associations in the lncRNADisease database
(http://www.cuilab.cn/lncrnadisease), there have been more
than 200 diseases associated with various lncRNAs and more
than 300 lncRNAs playing critical roles in various human com-
plex diseases [106].

LncRNAs could function as potential biomarkers for disease
diagnosis, treatment and prognosis, and potential drug targets
for drug discovery and clinical treatment [97]. For example,
lncRNA HOTAIR is treated to be potential biomarker of HCC re-
currence and breast cancer detection based on its overexpres-
sion from hundreds to even nearly two-thousand-fold in the
quantitative Polymerase Chain Reaction (PCR) [21, 107].
Furthermore, lncRNA PCA3 has been confirmed to be related to
the formation of prostate cancer aggressiveness by showing 60
times expression levels in prostate tumors compared with nor-
mal tissues [33]. lncRNA BC200 is expressed in many kinds of
cancers, such as breast, cervix, esophagus, lung, ovary, parotid
and tongue cancer, but not in corresponding normal tissues

[108]. Another example is lncRNA UCA1, which could contribute
to the diagnosis of bladder cancer [35]. In summary, many
lncRNAs have been connected to more than one disease, and
one disease can be associated with various lncRNAs. Some rep-
resentative human complex diseases and lncRNAs were intro-
duced as follows.

Breast cancer

Breast cancer is one of the most frequently diagnosed cancer
which comprises 22% of all cancers in women worldwide [109,
110]. Histopathological features of breast cancer, such as tumor
size, grade and lymph node status, could assist the diagnosis of
breast cancer [111]. Experiments indicate that multiple molecu-
lar alterations could cause the formation of breast cancer.
Especially, many lncRNAs were known to be associated with
the formation and development of breast cancer. Some
lncRNAs’ overexpression could enhance the carcinogenicity of
breast cancer cells [112]. For example, lncRNA H19 has great ef-
fects in primary breast carcinomas [113, 114]. Down-regulation
of H19 significantly reduced the anchorage-independent growth
of breast cancer as well as lung cancer [115]. Besides, lncRNA
BC200 was found to be expressed in the breast cancer and could
be used to predict the tumor development which would benefit
the diagnosis and treatment of breast cancer [108, 116].
Furthermore, CDKN2B-AS1 mainly expressed co-clustered with
p14/ARF in human breast tumors [117]; GAS5 was also linked
with breast cancer because its transcript levels were signifi-
cantly reduced compared to unaffected normal breast epithelia
[118, 119]; amplification of PVT1 could contribute to the patho-
physiology of breast cancer [104]. What’s more, XIST,
KCNQ1OT1 and NEAT1 were also experimentally confirmed to
be closely related to breast cancer [120–122].

Lung cancer

Lung cancer is the leading cause of cancer-related deaths world-
wide, with the mortality even higher than the combination of
colon, breast and prostate cancers [105, 123–125]. Furthermore,
the data collected in the recent 5 years further suggested that
the survival rate of lung cancer patients (�%15) is much lower
than other cancers [126]. According to the disease patterns and
treatment strategies, lung cancer could be roughly divided into
non-small cell lung cancer (NSCLC) (80.4%) and small cell lung
cancer (SCLC) (16.8%) [124]. Biological experiments demon-
strated that lncRNA BCYRN1 was expressed in the tissues of the
lung, breast, cervix, esophagus, ovary, parotid and tongue can-
cer, but it was not expressed in corresponding normal tissues
[108]. LncRNA H19 was also confirmed to be associated with
lung cancer. Experiments showed that lung cancer cell clonoge-
nicity and anchorage-independent growth would be signifi-
cantly decreased when H19 was downregulated [113]. Besides,
the expression of the tumor suppressor lncRNA GAS5 was also
found significantly downregulated in lung cancer tissues [127].

Hepatocelluar carcinoma (HCC)

As the third leading cause of cancer deaths worldwide with the
surveillance rates below 20%, HCC is a big threat to human
healthy in many countries [128–130]. As far as we know, many
factors are closely related to the formation of HCC, such as the
infection with hepatitis B virus (HBV) or hepatitis C virus (HCV),
aflatoxin B1 intake, alcohol consumption, non-alcoholic fatty
liver disease and some hereditary diseases [128, 131]. Especially,
the incidence of HBV and HCV is high in Asia and Africa, which
largely leads to the development of HCC [132, 133]. Recently,
more and more evidences demonstrated that lncRNAs have
been involved in HCC. LncRNA Dreh can modify the expression
and reorganization of vimentin through binding to vimentin to
inhibit HCC metastasis [134, 135]. In addition, lncRNA HOTAIR,
LALR and HULC can impact proliferation of hepatoma cells
through targeting various key regulators of different pathways
in HCC [128, 135]. Particularly, HULC’s depletion gave rise to a
significant abnormality of several genes related to HCC [136].
Furthermore, LncRNA ATB was suggested to be associated with
poor prognosis of HCC since it could promote HCC cell invasion
and the invasion-metastasis cascade in HCC [137]. Braconi et al.
[135] also found that the expression of MEG3 was markedly
reduced in four human HCC cell lines compared with normal
liver cells. Another downregulated lncRNA LET played a critical
role in hypoxia-induced metastasis in HCC [135, 138].

Alzheimer’s disease

According to recent studies, the number of people with demen-
tia worldwide is increasing at a rapid pace [139]. AD is a chronic
progressive neurodegenerative disorder, which is caused by the
loss of synapses and neurons in specific brain regions such as
the CA1 region of hippocampus [140, 141]. Accumulating
researches indicated that lncRNAs such as BACE1-AS and BC200
were closely related to AD. For example, the expression of
BACE1-AS could drive rapid feed-forward regulation of beta-
secretase in AD [26]. Furthermore, compared with age-matched
normal brains, significant upregulation of BC200 RNA was found
in brain areas that are involved in AD [142, 143]. Furthermore,
BC200 expression levels tend to increase with the progression of
AD [142, 143].
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Heart failure (HF)

HF is a complex clinical syndrome with high concurrent rate
and mortality rate [144–146]. Recent studies have found several
lncRNAs associated with HF (such as Fendrr [84], Trpm3 and
Scarb2 [144]) and revealed the critical functions of these
lncRNAs in heart development and HF. These lncRNAs would
have important therapeutic potential for HF [147]. For example,
tissue-specific lncRNA Fendrr is an essential regulator of heart
development [84]. Furthermore, lncRNA Nkx2-5 is a genetic
modifier of myotonic muscular dystrophy RNA toxicity, which
has important functionality in heart dysfunction [19]. The mito-
chondrial lncRNA LIPCAR was downregulated early after myo-
cardial infarction but upregulated in later stages. Therefore,
LIPCAR could be used to predict survival for the patients with
HF and identify the state of patients’ cardiac remodeling inde-
pendent to other risk markers associated with cardiovascular
deaths [148].

MEG3

Recent studies showed that some lncRNAs, such as MEG3,
HOTAIR, lincRNA-p21 and MALAT-1, work as “tumor-suppres-
sor ncRNAs” or “oncogenic ncRNAs” and play a major role in the
development of various cancers (breast cancer, lung cancer,
HCC, colon cancer, chronic myeloid leukemia, prostate cancer,
etc.) [25]. For example, a pituitary-derived MEG3 isoform could
inhibit cancer cell proliferation to some extent [25, 149]. The
locus of MEG3 has been predicted to be associated with the
pathogenesis and progression of several kinds of tumors, such
as meningiomas, nasopharyngeal carcinoma, colorectal carcin-
oma and leukemia [150]. It was observed that the DLK1-MEG3
locus was silenced and there was no allele loss at the MEG3
gene locus in human non-functioning pituitary tumors [150–
152]. Furthermore, the imprinted DLK1-MEG3 gene region on
chromosome 14q32.2 would also have influence on susceptibil-
ity to type 1 diabetes [153].

H19

H19 has been used as sensitivity diagnostic marker of many im-
portant human diseases [154, 155]. For example, upregulated
H19 can regulate ID2 expression to promote bladder cancer
cell proliferation [156]. Downregulated H19 can stimulated
melanogenesis in melisma and may cause melanoma [157].
Furthermore, epigenetic dysregulation of H19 was associated
with diseases such as pituitary adenoma and Prader–Willi syn-
drome [158]. Studies showed that about 37% of patients with
Wilms’ tumor may be caused by H19 epimutation [159]. H19
could be used to distinguish whether disease is geneogenous
for patients with Beckwith–Wiedemann syndrome [160]. In add-
ition, H19 is also frequently overexpressed in myometrium and
stroma during pathological endometrial proliferative events
and thus may function as tumor suppressor of kidney cancer
[154, 161].

HOTAIR

The expression level of HOTAIR would significantly increase in
various cancers such as breast cancer [21], lung cancer [162] and
HCC [32, 163]. The expression of HOTAIR in primary breast
tumors has been treated as an effective prognosis marker of pa-
tient survival [164] considering that it showed positive associ-
ation with breast cancer invasiveness and metastasis [21].
HOTAIR was also confirmed to be upregulated in lung cancer

cells based on a three-dimensional organotypic culture model
[165]. As a potentially useful biomarker and drug target in ma-
lignant gastrointestinal stromal tumor (GIST), frequent upregu-
lation of HOTAIR was detected in GIST [166]. Furthermore,
HOTAIR was also regarded as a negative prognostic factor in
both primary tumors and blood of colorectal cancer patients
[167]. HOTAIR can also be used as an independent prognostic
factor of tumor recurrence for HCC patients after liver trans-
plantation [32, 106]. Another example demonstrated that
HOTAIR could function as a competing endogenous RNA to
regulate HER2 expression by sponging miR-331-3p in gastric
cancer [167, 168].

MALAT1

MALAT1 was found to be overexpressed in many solid tumors
such as lung cancer, cervical cancer, colorectal cancer and HCC
[98]. Specially, it was regarded as a decisive regulator of the
metastasis phenotype of lung cancer cells [169] because of its
regulation of alternative splicing [170]. Furthermore, MALAT1
expression is three-fold higher in metastasizing tumors like
NSCLC than in non-metastasizing tumors. As the oncogene of
bladder cancer and kidney cancer, MALAT1 also plays a critical
role in cell migration and tumor metastasis [169, 171]. MALAT1
was also treated as a putative marker for prostate cancer [172].

PVT1

PVT1 has close associations with various complex diseases. For
example, it has been demonstrated that PVT1 may contribute to
the development and progression of diabetic nephropathy [29].
Furthermore, the overexpression of PVT1 caused by genomic
abnormalities contributed to ovarian pathogenesis [104]. What’s
more, the identification of chromosome 15 locus for plasmacy-
toma variant (6; 15) translocations suggested that PVT1 is asso-
ciated with some murine T lymphomas [173]. In addition, PVT1
works as the site of reciprocal translocations to immunoglobu-
lin loci in tumors like Burkitt’s lymphoma and plasmacytomas
[174].

Databases

A plenty of lncRNA-related databases have been constructed re-
cently, including databases annotating lncRNA’s sequences or
structures such as LNCipedia [37, 38], providing comprehensive
information of lncRNAs such as NONCODE [48–52] and
lncRNAwiki [175], displaying the experimentally confirmed
lncRNA–disease associations such as lncRNADisease [106] and
Lnc2Cancer [176], and collecting lncRNA-related interactions
such as LncRNA2Target [177] and DIANA-LncBase [178].

Databases collecting comprehensive information of
lncRNAs

LNCipedia
(http://www.lncipedia.org/) [37, 38]

The latest version of this database is LNCipedia 3.1, which
contains 111 685 annotated human lncRNA transcripts obtained
from different sources. It also provides some additional infor-
mation such as protein-coding potential, secondary structure
information and microRNA (miRNA) binding sites. The database
is publicly available, which allows users to download the infor-
mation they need or query new information of lncRNAs, such
as sequences and structures.
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NONCODE database
(http://www.bioinfo.org/noncode/) [48–52]

NONCODE database is an integrated knowledge database
including almost all traditional ncRNA classes (except tRNAs
and rRNAs). In particular, the expression profiles and predicted
functions of these lncRNAs are also included in it. It also pro-
vides a service of lncRNA identification. Users can convert the
RefSeq or Ensembl ID to NONCODE ID on NONCODE. In the lat-
est version of NONCODE 2016, the number of lncRNAs has
increased sharply from 21 083 to 527336 compared with
NONCODE v4.0. Specially, there are 167 150 and 130 558
lncRNAs about human and mouse, respectively. NONCODE 2016
further introduces the information of conservation annotation
and lncRNA–disease associations.

LncRBase
(http://bicresources.jcbose.ac.in/zhumur/lncrbase) [179]

LncRBase collects the information of 216 562 lncRNA tran-
script entries in human and mouse. The basic lncRNA transcript
features and additional details on genomic location, overlapping
small non-coding RNAs, associated Repeat Elements, associated
imprinted genes and lncRNA promoter information are all
included in it. It allows users to search for the datasets through
selecting one property of lncRNA.

lncRNAWiki
(http://lncrna.big.ac.cn) [175]

lncRNAWiki is a community-curated resource of lncRNA
knowledge. The lncRNA sequences and annotation information
in it are collected from three databases: GENCODE (version 19;
23 898 human lncRNA transcripts) [11, 12], NONCODE (version
4.0; 95 135 human lncRNA transcripts) [48–52] and LNCipedia
(version 2.1; 32 181 human lncRNA transcripts) [37, 38]. Finally,
105 255 non-redundant lncRNA transcripts are obtained from
these resources. The classifications of lncRNAs based on gen-
omic location are provided in this database. LncRNAWiki allows
users to edit or download the information, or add the newly
identified lncRNAs to it [175].

lncRNome
(http://genome.igib.res.in/lncRNome) [180]

lncRNome is an evidence-based resource for over 17 000
lncRNAs in human. Each lncRNA has several properties: the types,
chromosomal locations, description on the biological functions
and disease associations of lncRNAs. Users can enter the lncRNA’s
name and obtain the corresponding information about it. In add-
ition to the information mentioned above, the methylation and
histone modification, single nuclenotide polymorphisms, miRNA
binding sites and integrated validated lncRNA–protein inter-
actions are all available.

lncRNAdb
(http://www.lncrnadb.org) [39, 47]

lncRNAdb aims to summarize the knowledge of eukaryotic
lncRNAs in an easily accessible and searchable format. Each
entry contains information of nucleotide sequences, genomic
context, gene expression data derived from the Illumina Body
Atlas, structural information, subcellular localization, conserva-
tion and function with referenced literature of each entry. It
allows users to search for the information about lncRNAs and
submit new entries.

GreeNC
(http://greenc.sciencedesigners.com) [181]

To facilitate the study of lncRNAs for the plant research, the
GreeNC database was developed to provide information about
sequence, genomic coordinates, coding potential and folding
energy for all the identified lncRNAs in 37 plant species and six
algae. Among more than 190 000 transcripts, more than 120 000
transcripts are annotated as lncRNAs with high confidence,
with 30% of them from the Triticum aestivum (17.8%) and Zea
mays (8.2%).

Databases about SNP and lncRNAs

SNP@lincTFBS
(http://bioinfo.hrbmu.edu.cn/SNP_lincTFBS) [182]

SNP@lincTFBS was designed to promote the study and
understanding of lincRNA-associated variants and provide im-
proved convenience to identify the function of the abundance
of discrepant lincRNA expression in human diseases. It contains
5835 lincRNAs, 6665 single nucleotide polymorphisms (SNPs)
mapped within 6614 potential transcription factor binding sites
(TFBSs) of 2423 human lincRNAs, 33 181 TFBSs of 3839 human
lincRNAs from ucsc dataset and 323 256 TF peaks of 4831
human lincRNAs from ChIPSeq dataset. Users can search SNP
or TFBSs of human lincRNAs. This important database has great
significance in identification of disease-associated lincRNA
candidates.

LncRNASNP
(http://bioinfo.life.hust.edu.cn/lncRNASNP) [183]

LncRNASNP is a resource including SNPs in human/mouse
lncRNAs, SNP effects on lncRNA structure and lncRNA–miRNA
binding. There are 495 729 SNPs in 32 108 human lncRNA tran-
scripts of 17 436 lncRNA genes for browse or search. In addition,
users can obtain the targeted lncRNAs of a miRNA through se-
lecting the miRNA’s name in the blank.

Databases collecting lncRNA-related interactions

DIANA-LncBase
(http://www.microrna.gr/LncBase) [178]

DINAN-LncBase is used to illustrate the assumed miRNA–
lncRNA functional interactions. It consists of two distinct mod-
ules: the Experimental Module and the Prediction Module.
There are more than 5000 experimentally supported inter-
actions between 2958 lncRNAs and 120 miRNAs included in the
Experimental module. Furthermore, there are more than 10 mil-
lion computationally predicted interactions between 56 097
lncRNAs and 3078 miRNAs and their corresponding detailed in-
formation in the Prediction module, which is calculated based
on the latest version of a state-of-the-art algorithm, DIANA-
microT-CDS.

LncRNA2Target
(http://www.lncrna2target.org) [177]

LncRNA2Target is a resource of differentially expressed
genes (target genes of an lncRNA) after lncRNA knockdown or
overexpression. The target genes regulated by an lncRNA and
the regulatory lncRNAs of a specific target gene are all available
for users to search and browse. In this database, there are 26
410 human lncRNA-target associations between 82 lncRNAs
and 11 605 target genes and 67 152 mouse lncRNA-target associ-
ations between 134 lncRNAs and 14 762 target genes. It also
allows users to download the manually curated lncRNA-target
association data in the database or submit new data to the
database.
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Databases collecting lncRNA–disease associations

LncRNADisease
(http://www.cuilab.cn/lncrnadisease) [106].

Chen et al. developed the LncRNADisease database that inte-
grated more than 1000 lncRNA–disease entries and 475 lncRNA
interaction entries, including 321 lncRNAs and 221 diseases
from �500 publications. LncRNADisease curates lncRNA inter-
actions in various levels, including the interactions with pro-
tein, RNA, miRNA and DNA. It also provides the predicted
associations between human diseases and 1564 human
lncRNAs. It is also a platform that integrated tool(s) which could
effectively predict novel lncRNA–disease associations.
Furthermore, it allows users to browse, search or download the
experimentally supported lncRNA–disease association data or
lncRNA interaction data and submit new entries. Finally, users
can predict potential disease-lncRNA associations based on the
computational models developed in literature [184] (described
in detail in the following sections) and then download the pre-
dicted association results. The prediction would be imple-
mented by identifying lncRNAs within the regions of 50 kb from
any of the disease-related genes based on the genomic context
of the lncRNAs and known disease-gene associations.

Lnc2Cancer
(http://www.bio-bigdata.net/lnc2cancer) [176]

Lnc2Cancer is a manually curated database that aims to pro-
vide a high-quality and integrated resource for exploring the
mechanisms and functions of cancer related lncRNAs. It con-
tains 1239 entries of associations between 579 human lncRNAs
and 93 human cancers, which are collected from more than
1,500 published papers. The lncRNA and cancer name, the
lncRNA expression pattern, experimental techniques, a brief
functional description, the original reference and additional an-
notation information are all provided by Lnc2Cancer.

MNDR
(http://www.rna-society.org/mndr) [185]

MNDR is a repository focused on diverse ncRNA–disease re-
lationships in mammals that aims to provide a platform to glo-
bally view the ncRNA-mediated disease network. Totally, 807
lncRNA-associated, 229 miRNA-associated, 13 piRNA-associated
and 100 snoRNA-associated entries are integrated from three
mammals (866, 251 and 32 from Homo sapiens, Mus musculus
and Rattus norvegicus, respectively).

Computational models

As more and more research evidences have indicated that the
mutations and dysregulations of lncRNAs are closely connected
to diverse human diseases, more attentions have been paid on
the clarity of the functions of lncRNAs and their associations
with human diseases [186–188]. Especially, computational mod-
els could be effective ways for the identification of potential
lncRNA functions and lncRNA–disease associations. Here, we
proposed the framework of constructing powerful computational
models to predict potential lncRNA–disease associations, which
includes three kinds of feasible and important research schemas.

LncRNA–disease associations could be predicted based on
powerful computational models in the following three ways.
First, we could construct machine learning-based models to
predict potential lncRNA–disease associations based on training
samples (known disease-related lncRNAs) and unlabeled sam-
ples (disease–lncRNA pairs without any known association

evidences). Then, we could integrate known lncRNA–disease as-
sociation network, disease similarity network and lncRNA simi-
larity network to construct heterogeneous network and
implement global network similarity-based models (such as
random walk and various propagation algorithms) to uncover
potential associations between lncRNAs and diseases. Most of
these methods cannot be applied to new diseases (diseases
without any known associated lncRNAs) and/or new lncRNAs
(lncRNAs without any known associated diseases or known
miRNA interaction partners). Finally, considering the fact that a
plenty of disease–gene associations and disease–miRNA associ-
ations have been obtained [189–195], we could obtain potential
lncRNA–disease associations based on known disease-related
genes/miRNAs by constructing the relationships between gene/
miRNAs and lncRNAs based on their expression levels and regu-
lation relationship.

Machine learning-based models

Laplacian Regularized Least Squares for LncRNA–Disease
Association (LRLSLDA)
Chen et al. [35] developed the powerful computational model of
LRLSLDA to predict potential disease-related lncRNAs based on
the semi-supervised learning framework (see Figure 1). To our
knowledge, LRLSLDA is the first lncRNA–disease association
prediction model, which is developed based on the basic as-
sumption that similar diseases tend to have associations with
functionally similar lncRNAs. LRLSLDA integrates the known
disease–lncRNA associations and lncRNA expression profiles to
jointly capture the potential associations between disease and
lncRNA. LRLSLDA obtains an AUC of 0.7760 in the Leave-One-
Out Cross Validation (LOOCV), significantly improving the per-
formance of previous methods which are used to solve the simi-
lar computational biology problems. More importantly,
LRLSLDA does not need the information of negative samples,
which are really difficult to obtain in practical problems. Of
course, there are also some limitations in the LRLSLDA. For ex-
ample, many parameters appear in the model and how to select
the parameters is still not well solved. Furthermore, two differ-
ent scores from lncRNA and disease spaces would be obtained
for the same lncRNA–disease pair.

LRLSLDA–LNCRNA functional SIMilarity calculation model
(LNCSIM)
Based on the assumption that functional similar lncRNAs are al-
ways associated with similar diseases, Chen et al. [8] developed
two novel LNCSIMs by calculating semantic similarity between
their associated disease groups (see Figure 2). The difference be-
tween these two models (LNCSIM1 and LNCSIM2) lies in the cal-
culation of disease semantic similarity based on disease
directed acyclic graph (DAG), which could effectively represent
the relationships among different diseases. When disease se-
mantic similarity and lncRNA functional similarity (calculated
by LNCSIM) are integrated with lncRNA expression similarity,
lncRNA Gaussian interaction profile kernel similarity and dis-
ease Gaussian interaction profile kernel similarity used in the
previous study of LRLSLDA, new lncRNA–disease association
model, LRLSLDA–LNCSIM, is obtained, which could further im-
prove the performance of LRLSLDA for lncRNA–disease associ-
ation prediction. As a result, we obtained the reliable AUCs of
0.8130 and 0.8198 in LOOCV based on two versions of lncRNA
similarity scores. Limitations also existed in this method.
Considering the fact that the method is based on the known
lncRNA–disease associations, prediction results may produce
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the bias to lncRNAs with more known associated diseases.
What’s more, the selection of semantic contribution decay fac-
tor has not been well solved.

LRLSLDA–Improved LNCRNA functional SIMilarity calculation
model (ILNCSIM)
Huang et al. further developed the ILNCSIM based on the as-
sumption that lncRNAs with similar biological functions tend to

be involved in similar diseases [196]. ILNCSIM was combined
with the previously proposed model LRLSLDA to quantify
lncRNA–disease association probabilities by using computed
lncRNA functional similarity and disease semantic similarity.
The main difference between ILNCSIM and previous methods is
that ILNCSIM retains the general hierarchical structure informa-
tion of disease DAGs for disease similarity calculation based on
an edge-based method. As a result, LRLSLDA–ILNCSIM obtained

Figure 2. The flowchart of LNCSIM which have described the basic ideas of calculating functional similarity between two lncRNAs: (A) constructed the DAGs for disease

A and B which are associated with lncRNA u and v; (B) calculated semantic similarity between disease A and B; (C) calculate the similarity score between two disease

groups associated with lncRNA u and v. and then obtained functional similarity between them.

Figure 1. The flowchart of LRLSLDA which have described the basic steps to predict lncRNA–disease associations based on LRLSLDA.
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AUCs of 0.9316 and 0.9074 based on MNDR and Lnc2cancer data-
bases in the LOOCV and AUCs of 0.9221 and 0.9033 for MNDR
and Lnc2cancer database in 5-fold cross validation, respectively.
Limitations also existed in ILNCSIM. For example, the similarity
scores used in the model can be further optimized by adding
constant terms in calculation. The calculation result was also
influenced by the lack of unrecorded but real lncRNA–disease
associations. Finally, ILNCSIM still failed to integrate other types
of lncRNA-related or disease-related data from biological data-
bases. It is undoubted that the prediction performance will be
further improved by integrating those additional data.

Naı̈ve Bayesian classifier
Using known cancer-related lncRNAs, Zhao et al. [76] developed a
naı̈ve Bayesian classifier-based model based on the integration of
multi-omic data, genomic, regulome and transcriptome data, to
identify new cancer-related lncRNAs. The model was evaluated
based on 10-fold cross validation on re-annotated publicly avail-
able exon array data of multiple cancer types and knockdown
data of orthologous lncRNAs on mice. As a result, the proposed
model showed a good performance and successfully identified
707 potential cancer-related lncRNAs. The important limitation
of supervised classifiers, such as support vector machine (SVM)
and naı̈ve Bayesian classifier used here, is that they need the in-
formation of negative samples, which are unavailable in the cur-
rent study. Therefore, they always randomly select unlabeled
lncRNA–disease pairs as negative samples, which would ser-
iously influence the prediction performance.

Biological network-based models

RWRlncD
Based on the assumption that functionally related lncRNAs
tend to be associated with phenotypically similar diseases, Sun
et al. [197] proposed a global network-based computational
method named RWRlncD based on an lncRNA–lncRNA func-
tional similarity network. By constructing lncRNA–disease asso-
ciation network, disease similarity network and lncRNA
functional similarity network, RWRlncD was proposed to infer
potential human lncRNA–disease associations by implementing
random walk with restart (RWR) on the lncRNA functional simi-
larity network. RWRlncD obtained an AUC of 0.822 in LOOCV
based on known experimentally verified lncRNA–disease asso-
ciations. However, this method cannot be applied to the dis-
eases without any known associated lncRNAs. The prediction
performance of RWRlncD would be further improved when
more lncRNA–disease associations and more accurate lncRNA
functional similarity measures are available in the future.

RWR on lncRNA–PCG bipartite network
Liu et al. constructed a protein-coding gene (PCG)–lncRNA bi-
partite network based on lncRNAs and PCGs expression profiles
in prostate cancer and protein interaction datasets and further
predict cancer-related lncRNAs based on RWR [198]. However,
this method was seriously affected by the incomplete protein
interaction datasets.

RWRHLD
Based on the assumption that lncRNAs with more common
miRNA interaction partners tend to be associated with similar
diseases, Zhou et al. [199] proposed the computational model of
RWRHLD to identify potential lncRNA–disease associations (see
Figure 3). RWRHLD integrated three networks (miRNA-associ-
ated lncRNA–lncRNA crosstalk network by calculating shared

miRNA interaction partners for each lncRNA pair, disease–dis-
ease similarity network and known lncRNA–disease association
network) into a heterogeneous network and implemented a
random walk on it. RWRHLD obtained a reliable AUC value of
0.871 in LOOCV based on known experimentally verified
lncRNA–disease associations. However, RWRHLD is only applied
to lncRNAs with known lncRNA–miRNA interactions.
Furthermore, the incomplete coverage of lncRNA crosstalk net-
work and lncRNA–disease association network will probably
produce some biased predictions.

Kernel-based Random Walk with Restart in Heterogeneous (KRWRH)
The computational model of KRWRH network was proposed to
predict new disease–lincRNA associations using three networks:
disease–disease similarity network, lincRNA–lincRNA similarity
network and known lincRNA–disease association network [200].
These networks will be integrated to construct a heterogeneous
network. Then, RWR would be implemented on this heteroge-
neous network. The experimental results in LOOCV showed
that KRWRH was able to predict known and unknown disease–
lincRNA associations with a reliable performance.

KATZLDA
Chen et al. [201] developed another model called KATZLDA by
integrating known lncRNA–disease associations, lncRNA ex-
pression profiles, lncRNA functional similarity, disease seman-
tic similarity and Gaussian interaction profile kernel similarity
to uncover potential lncRNA–disease associations (see Figure 4).
KATZLDA first transforms link prediction into similarity calcu-
lation between nodes and further transforms similarity calcula-
tion into counting the number of walks connecting lncRNA
node and disease node in the heterogeneous network and cal-
culating the lengths of their walks to jointly decide the potential
association probability. As a result, KATZLDA obtained reliable
AUCs of 7175, 0.7886 and 0.7719 in the local LOOCV, global
LOOCV and 5-fold cross validation, respectively. It is important
that KATZLDA could be effectively applied to new diseases and
lncRNAs without any known associations. The prediction per-
formance of KATZLDA can be further improved by integrating
more information such as disease phenotypic similarity, known
disease–genes/miRNAs associations and various lncRNA-
related interactions. However, KATZLDA may cause the bias to
diseases with more known related lncRNAs and lncRNAs with
more known associated diseases or/and more known miRNA
interaction partners.

Propagation algorithm on coding-non-coding gene–disease bipartite
network
Yang et al. [202] constructed coding-non-coding gene–disease
bipartite network based on known disease genes and lncRNA–
disease associations and further implemented a propagation al-
gorithm on this bipartite network to infer the underlying
lncRNA–disease associations. As a result, the method obtained
an AUC of 0.7881 in LOOCV. However, the lack of interactions
between non-coding genes and protein-coding genes and
lncRNA functional annotations affected the performance of this
method.

Models not based on known lncRNA–disease
associations

In the above two subsections, all the computational models
need the known lncRNA–disease associations to implement
prediction. However, even nowadays, known experimentally
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confirmed lncRNA–disease associations are still very limited.
Therefore, researchers start to predict lncRNA–disease associ-
ation based on the known disease-related genes/miRNAs and
the relationships between lncRNAs and genes/miRNAs.

Computational framework based on disease genes
Liu et al. [203] developed the first computational method with-
out the need to rely on known lncRNA–disease associations to

predict potential human lncRNA–disease associations by inte-
grating known human disease genes and expression profiles of
human lncRNAs and gene (see Figure 5). In this method,
the lncRNAs were divided into two parts: tissue-specific and
non-tissue-specific lncRNAs. They first calculated the tissue
specificity scores based on the expression levels of all lncRNAs
in different tissues. Then, for tissue-specific lncRNAs, this com-
putational framework infers that there could be potential

Figure 4: The flowchart of KATZLDA which demonstrates the basic ideas of adopting Katz measure for predicting lncRNA–disease associations. A colour version of this

figure is available at BIB online: https://academic.oup.com/bib.

Figure 3: The flowchart shows the three steps of RWRHLD: (A) constructing the lncRNA-miRNA interaction network based on the ‘‘ceRNA hypothesis’’ and the disease–

disease similarity network based on disease DAG structure; (B) constructing the heterogeneous lncRNA–disease network by integrating lncRNA crosstalk network, dis-

ease similarity network, and experimentally confirmed lncRNA–disease association network; (C) implementing random walk on the heterogeneous network and ob-

taining a stable probability to rank candidate lncRNAs. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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associations between this lncRNAs with diseases related with
these human tissues. Furthermore, it could obtain related dis-
eases for non-tissue-specific lncRNAs based on disease–gene
associations and gene–lncRNA co-expression relationship. The
model obtained an AUC of 0.7645 in LOOCV and the prediction
accuracy of 0.89 for non-tissue-specific lncRNAs. However, this
method cannot predict the associated lncRNAs for diseases
with no related gene records.

Genomic location-based method
Li et al. [184] proposed a computational method based on gen-
ome location to globally screen the human lncRNAs potentially
involved in vascular disease. Ten lncRNAs predicted to be asso-
ciated with vascular smooth muscle cells were selected for fur-
ther experimental validation to test the accuracy of the method.
As a result, eight of the 10 lncRNAs (80%) were confirmed. The
experimental result demonstrated the reliable prediction per-
formance of this method and its potential value for the identifi-
cation of novel lncRNAs for the diagnosis and therapy of
vascular disease. However, the application scope of this method
is extremely limited because not all the lncRNAs have neighbor
genes and even if this lncRNA has neighbor genes, it may be not
functionally related with its neighbor genes.

HyperGeometric distribution for LncRNA–Disease Association
(HGLDA)
Chen [204] developed a novel computational model of HGLDA
inference by integrating miRNA–disease associations and
lncRNA–miRNA interactions (see Figure 6). In addition, Chen
also constructed a model of LncRNA Functional Similarity
Calculation based on the information of MiRNA (LFSCM) to cal-
culate lncRNA functional similarity combining disease semantic
similarity, miRNA–disease associations and lncRNA–miRNA
interactions. As a result, HGLDA obtained an AUC of 0.7621 in
LOOCV although it did not rely on any known disease–lncRNA
associations. HDLDA has a reliable performance of predicting
potential disease–lncRNA associations and could be useful in

detecting biomarkers for human disease diagnosis, treatment,
prognosis and prevention. However, HGLDA cannot be applied
to those lncRNAs without any known miRNA interaction part-
ners. Furthermore, considering the calculation of LFSCM, it
tends to cause bias to lncRNAs with more miRNA interaction
partners or/and lncRNAs with miRNA interaction partners
which has been associated with more diseases.

Case studies and experimental validations

A plenty of computational models mentioned above have been
successfully applied to potential disease–lncRNA association
prediction. For the prediction, known lncRNA–disease associ-
ations in the databases, such as lncRNADisease [106], MNDR
[185] and Lnc2Cancer [176], are used as training samples. Some of
prediction results have been further confirmed by biological ex-
periments (see Table 1). Case studies about six kinds of import-
ant human cancers are summarized as follows.

Colon cancer
Researchers have implemented the computational models of
LRLSLDA–ILNCSIM [196], KATZLDA [201], HGLDA [204] and
LRLSLDA–LNCSIM [8] to predict potential colon cancer-related
lncRNAs. As a result, we experimentally confirmed six lncRNAs
out of top 20 potential predictions based on LRLSLDA–ILNCSIM.
Furthermore, four and seven out of top 10 predicted lncRNAs
based on LRLSLDA–LNCSIM and KATZLDA were confirmed
based on various biological experiments. For example, PVT1
(3rd in the prediction results of KATZLDA) was confirmed to be
functionally correlated with the proliferation and invasion of
colon cancer cells based on real-time PCR and considered to be
a potential independent colon cancer biomarker for disease de-
tection and patient survival [205]. For the computational model
of HGLDA, predicted lncRNAs with false discovery rate (FDR)
less than 0.05 were selected as potential colon cancer-related
lncRNAs and five of them were experimentally confirmed. For
example, considering the frequent occurrence of loss of

Figure 5: This method consists the following four steps: calculating tissue specificity score and dividing all the lncRNAs into tissue-specific and non-tissue-specific

lncRNAs; predicting potential lncRNA–disease associations for tissue-specific lncRNAs; constructing gene–lncRNA co-expression relationships for all the non-tissue-

specific lncRNAs by computing Spearman’s correlation coefficients between their expression profiles; performing disease enrichment and predicting potential

lncRNA–disease associations for non-tissue-specific lncRNAs. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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imprinting of KCNQ1OT1 in colon cancer, it has been considered
as an effective biomarker for disease diagnosis [206].

Lung cancer
The computational models of LRLSLDA–LNCSIM [8], LRLSLDA–
ILNCSIM [196] and HGLDA [204] have been used for lung cancer–
lncRNA association prediction. As a result, three out of top 10
(LRLSLDA–LNCSIM) and seven out of top 20 (LRLSLDA–ILNCSIM)
predictions were experimentally confirmed. For example, UCA1
in the 3rd of the prediction result have been confirmed to pro-
vide the high diagnostic ability for NSCLC [207]. Furthermore,
seven out of all the potential lung cancer-related lncRNAs with
FDR less than 0.05 were experimentally confirmed. For example,
MALAT1 is an important lung cancer metastasis biomarker,
which could promote lung cancer cell motility by regulating mo-
tility related gene expression [208]. TUG could affect NSCLC cell
proliferation by epigenetically regulating the expression of
HOXB788 [209].

Breast cancer
HGLDA [204] was applied to breast cancer for associated lncRNA
prediction and seven potential lncRNAs with significant FDR
less than 0.05 have been confirmed based on biological experi-
ments. For example, NEAT1 could play critical role in nicotine-
induced breast cancer development. Further experiments indi-
cated that breast cancer patients with high NEAT1 expression
tend to have low survival rate [122, 210].

Prostate cancer
As an important human complex disease, many researchers
paid much attention to predicting prostate cancer–lncRNA asso-
ciations based on the computational models such as LRLSLDA–
ILNCSIM [196]. Six associations were successfully predicted by
computational models, such as the associations between H19,
CBR3-AS1, MEG3, UCA1, KCNQ1OT1, LINCRNA-P21 and prostate
cancer.

Gastric cancer
KATZLDA [201] has been successfully applied to identify potential
associations between human lncRNAs and gastric cancer. Six out
of top 10 predicted lncRNAs (H19, CDKN2B-AS1, MEG3, PVT1,
MALAT1 and HOTAIR) have been confirmed by the experimental
evidences. For examples, H19 was ranked 1st in the prediction list.
Its associations with gastric cancer have been confirmed by both
microarray and Qrt-PCR. In the experiments, H19 was the most
upregulated lncRNA among all the 135 differentially expressed
lncRNAs in gastric cancer tissues [211]. Another prediction result,
MALAT1 in the 5th of the prediction results, has been confirmed
to induce gastric cancer cell proliferation and have frequently
upregulated expression in gastric cancer cell lines [212].

Renal cancer
Potential renal cancer–lncRNA associations have been predicted
based on the computational model of KATZLDA [201]. H19,
MEG3, PVT1, UCA1 and MALAT1 in the top 10 prediction results
have been confirmed by biological experiments.

Discussion and conclusion

More and more lncRNAs are being identified and characterized
at a rapid pace with the advances in transcriptome arrays and
deep sequencing [36]. Furthermore, lncRNAs are confirmed to
play critical roles in multiple biological processes [3, 18, 77–80].
Therefore, there is no surprise that lncRNAs have been closely
involved in the origin and development of various human com-
plex diseases based on a growing body of evidences [16]. The
roles of lncRNAs in multiple biological processes or various dis-
eases seem to be much more complex than what we have
known from GWAS studies as well as the studies of disease
processes [36]. However, so far, very little annotated lncRNAs
have obvious functional annotations for the lack of evolutionary
conservation of lncRNAs, the lack of common biogenesis or
mechanism of action for lncRNAs, and the absence of unified

Figure 6: The flowchart of HGLDA which showed the basic idea of predicting potential lncRNA–disease associations by integrating disease–miRNA associations and

lncRNA-miRNA interactions. The P value was obtained for each lncRNA–disease pair to examine whether they have significantly common associated miRNAs. Then

FDR correction was implemented to all these P values. At last, the lncRNA–disease pairs whose FDR was less than 0.05 were selected for experimental validation. A col-

our version of this figure is available at BIB online: https://academic.oup.com/bib.
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resources to annotate lncRNAs [213]. Especially, compared with
a large amount of lncRNA-related biological data about se-
quence and expression produced by a plenty of experimental
studies, only a few lncRNAs have been extensively studied to
annotate their possible functions and identify their potential as-
sociations with various human complex diseases.

The prediction of lncRNA–disease associations is of great sig-
nificance in biological, medical and other fields [214]. Recently,
scientists focused on building computational models to predict
new lncRNA–disease associations, which will help understand
the biogenesis, regulation and function of lncRNAs and human
disease molecular mechanism at lncRNA level, identify the asso-
ciations between lncRNAs and diseases and design biomarker
and drug for human disease diagnosis, treatment, prognosis and
prevention [7, 8, 35, 201, 203, 204]. Based on computational mod-
els, the association probability between lncRNAs and diseases
could be quantified and lncRNA–disease pairs with higher scores
could be selected for further biological experimental validation.
In this way, we could effectively decrease the time and the cost
of biological experiments. Therefore, computational models
could provide a powerful guidance and support to the research of
identifying novel lncRNA–disease associations. Computational
approaches could also be used to predict potential functions of
lncRNAs, identify novel lncRNA genes and construct potential
regulatory networks between lncRNAs and other molecules at
various levels [7].

In this paper, we summarized the functions of lncRNAs, five
important lncRNA-related diseases, five critical disease-related
lncRNAs and some important publicly available lncRNA-related
databases about sequence, expression, function, etc. Then, we
introduced some state-of-the-art computational models for
disease-related lncRNAs identification on a large scale, which
could be used to select most promising disease-related lncRNAs
for biological experiment validation. Computational models
consist of machine learning-based models, biological network-

Table 1. Predicted lncRNA–disease associations based on various
computational models were successfully experimentally confirmed

Model Disease lncRNA Rank

LRLSLDA–ILNCSIM Colon cancer UCA1 3

KATZLDA 6

LRLSLDA–ILNCSIM Colon cancer HOTAIR 13

KATZLDA 4

HGLDA FDR<¼ 0.05

LRLSLDA–ILNCSIM Colon cancer H19 1

HGLDA FDR<¼ 0.05

LRLSLDA–LNCSIM1 2

LRLSLDA–LNCSIM2 2

LRLSLDA–ILNCSIM Colon cancer XIST 14

HGLDA FDR<¼ 0.05

KATZLDA Colon cancer KCNQ1OT1 7

HGLDA FDR<¼ 0.05

KATZLDA Colon cancer MALAT1 2

HGLDA FDR<¼ 0.05

KATZLDA Colon cancer PVT1 3

LRLSLDA–LNCSIM1 5

LRLSLDA–LNCSIM2 5

KATZLDA Colon cancer CRNDE 9

LRLSLDA–LNCSIM1 1

LRLSLDA–LNCSIM2 1

LRLSLDA–LNCSIM1 Colon cancer CASC2 8

LRLSLDA–LNCSIM2 9

LRLSLDA–ILNCSIM Colon cancer MEG3 16

LRLSLDA–ILNCSIM Colon cancer HULC 19

KATZLDA Colon cancer CDKN2B-AS1 1

LRLSLDA–ILNCSIM Lung cancer HOTAIR 4

HGLDA FDR<¼ 0.05

LRLSLDA–LNCSIM1 2

LRLSLDA–LNCSIM2 2

LRLSLDA–ILNCSIM Lung cancer GAS5 10

HGLDA FDR<¼ 0.05

LRLSLDA–LNCSIM1 9

LRLSLDA–LNCSIM2 9

LRLSLDA–ILNCSIM Lung cancer UCA1 3

LRLSLDA–LNCSIM1 7

LRLSLDA–LNCSIM2 8

LRLSLDA–ILNCSIM Lung cancer BC200 1

LRLSLDA–ILNCSIM Lung cancer XIST 8

LRLSLDA–ILNCSIM Lung cancer MEG3 17

LRLSLDA–ILNCSIM Lung cancer LSINCT5 20

HGLDA Lung cancer EPB41L4A-AS1 FDR<¼ 0.05

HGLDA Lung cancer MALAT1 FDR<¼ 0.05

HGLDA Lung cancer TUG1 FDR<¼ 0.05

HGLDA Lung cancer H19 FDR<¼ 0.05

HGLDA Lung cancer NEAT1 FDR<¼ 0.05

LRLSLDA–ILNCSIM Prostate cancer H19 1

LRLSLDA–ILNCSIM Prostate cancer CBR3-AS1 2

LRLSLDA–ILNCSIM Prostate cancer UCA1 3

LRLSLDA–ILNCSIM Prostate cancer KCNQ1OT1 13

LRLSLDA–ILNCSIM Prostate cancer LINCRNA-P21 14

LRLSLDA–ILNCSIM Prostate cancer MEG3 15

KATZLDA Gastric cancer MALAT1 5

KATZLDA Gastric cancer H19 1

KATZLDA Gastric cancer CDKN2B-AS1 2

KATZLDA Gastric cancer MEG3 3

KATZLDA Gastric cancer PVT1 4

KATZLDA Gastric cancer HOTAIR 7

KATZLDA Renal cancer UCA1 8

KATZLDA Renal cancer H19 1

KATZLDA Renal cancer MEG3 3

KATZLDA Renal cancer PVT1 4

KATZLDA Renal cancer MALAT1 6

HGLDA Breast cancer MALAT1 FDR<¼ 0.05

LRLSLDA–LNCSIM1 15

HGLDA Breast cancer H19 FDR<¼ 0.05

HGLDA Breast cancer CDKN2B-AS1 FDR<¼ 0.05

HGLDA Breast cancer NEAT1 FDR<¼ 0.05

(continued)

Table 1. Continued

Model Disease lncRNA Rank

LRLSLDA 4

HGLDA Breast cancer XIST FDR<¼ 0.05

HGLDA Breast cancer KCNQ1OT1 FDR<¼ 0.05

HGLDA Breast cancer HOTAIRM1 FDR<¼ 0.05

LRLSLDA–LNCSIM1 Brain ischemia B2 SINE RNA 12

LRLSLDA–LNCSIM2 13

LRLSLDA–LNCSIM1 Lung adenocarcinoma MEG3 7

LRLSLDA–LNCSIM2 5

LRLSLDA–LNCSIM1 Lung adenocarcinoma BCYRN1 8

LRLSLDA–LNCSIM2 6

LRLSLDA–LNCSIM1 Colorectal neoplasia HOTAIR 6

LRLSLDA–LNCSIM2 8

LRLSLDA–LNCSIM1 Colorectal neoplasia KCNQ1OT1 10

LRLSLDA–LNCSIM2 14

LRLSLDA–LNCSIM1 Colorectal neoplasia MALAT1 9

LRLSLDA–LNCSIM2 11

LRLSLDA–LNCSIM1 Heroin abuse MEG3 2

LRLSLDA–LNCSIM2 4

LRLSLDA–LNCSIM1 Heroin addiction MIAT 11

LRLSLDA–LNCSIM2 7

LRLSLDA–LNCSIM1 Lung adenocarcinoma H19 3

LRLSLDA–LNCSIM2 2

LRLSLDA–LNCSIM1 cervix cancer H19 14

LRLSLDA Alzheimer disease HAR1A 17

LRLSLDA Alzheimer disease HAR1B 18

LRLSLDA bladder cancer TUG1 18

LRLSLDA melanoma BANCR 10
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based models and models without the need to rely on known
lncRNA–disease associations. Most of these models integrate
different types of biological datasets to implement prediction.
For the computational model construction, similarity calcula-
tion has important impact on accuracy of lncRNA–disease asso-
ciation prediction models. Therefore, how to develop effective
computational models to construct lncRNA functional similar-
ity and reasonably integrate the similarity scores from different
biological information is also a hot topic worthy of further re-
search. We also analyze the limitations of these models and dis-
cuss the future directions of computational lncRNA research.

Machine learning-based models have their advantages and
disadvantages. The key advantage of most of these approaches
is that almost all the models can effectively predict novel
lncRNA–disease associations for lncRNAs with at least one
known associated diseases and diseases with at least one
known associated lncRNAs. Some models, such as LRLSLDA–
LNCSIM and LRLSLD–-ILNCSIM, could be applied to predict
lncRNA-associated diseases by integrating lncRNA similarity
network, disease similarity network and experimentally con-
firmed lncRNA–disease associations. With more lncRNA–dis-
eases associations available in the future, prediction accuracy
could be further improved. Furthermore, the semi-supervised
models such as LRLSLDA could integrate positive lncRNA–dis-
ease associations and unlabeled lncRNA–disease pairs to imple-
ment effective prediction, which solve the problems of
obtaining negative lncRNA–disease associations. However,
supervised learning-based models, such as SVM and naı̈ve
Bayesian classifier, seriously rely on negative samples which
are difficult to obtain. The problems of parameter section, clas-
sifier combination and prediction bias also exist in the current
machine learning-based computational models.

Nowadays, network has become an effective tool in predict-
ing potential lncRNA–disease associations. Successful network-
based models would have critical impact on timely diagnosis,
personalized treatment, prognosis and personalized prevention
of diseases at the level of lncRNAs. Biological network-based
computational models tend to integrate known lncRNA–disease
association network, disease semantic/phenotypic similarity
network, and lncRNA functional similarity network obtained
from known lncRNA–disease associations or lncRNA–miRNA
interactions. RWR or various propagation algorithms are used
to implement potential predictions on constructed heteroge-
neous network. The important disadvantage of most of these
methods is that they may not obtain prediction results for new
diseases and/or new lncRNAs. Furthermore, the incomplete
coverage of lncRNA–miRNA interaction network, protein inter-
action network and lncRNA–disease networks will probably pro-
duce some biased prediction for lncRNAs with more known
associated diseases or miRNA interaction partners which has
been associated with more diseases. Nowadays, a wide range of
lncRNA-related databases and web servers have been built, pro-
viding a variety of resources of lncRNAs. Therefore, making full
use of different types of heterogeneous data sources will help to
greatly improve the predict performance of computational pre-
dictive models. Therefore, the future direction of the network-
based methods could be summarized as follows. On one hand,
more heterogeneous networks should be integrated, such as
lncRNA–disease network, disease similarity network and
lncRNA functional similarity network and lncRNA-related vari-
ous interaction networks. On the other hand, new network-
based computational models should be implemented on this
heterogeneous network rather than the single network. In this
way, for the lncRNAs without known associated diseases, we

still can obtain potential associated diseases of this lncRNA
based on the known heterogeneous network as long as there is
at least one reachable path in the network.

As for the models which do not rely on known lncRNA–
disease associations, they use other biological datasets to
predict potential lncRNA–disease associations, such as gene–
disease associations or miRNA–disease associations. Therefore,
the incomplete human disease-associated gene/miRNA dataset
will greatly affect the prediction performance of these computa-

tional models. Furthermore, the computational model based on
gene genomic context could be limited by the fact that not all
the lncRNAs have functionally related neighbor genes.

For most of the computational models mentioned above, the
prediction performance was evaluated based on cross valid-
ation. However, recently, Park et al. [215] demonstrated that the
performance evaluation based on cross validation is different
for in-sample and out-of-sample associations. We have de-
veloped a computational model named LRLSLDA to predict po-
tential lncRNA–disease associations and further evaluated the
performance of LRLSLDA based on the new validation frame-
work proposed by Park et al. [35]. As a result, LRLSLDA obtained
an excellent predictive performance in different test classes.
Therefore, for the lncRNA–disease association prediction, it is
very important and necessary to report cross validation per-
formance for all the four independent test classes.

Key Points
• We made a brief introduction of the functions of

lncRNAs, five important lncRNA-related diseases, five
critical disease-related lncRNAs and some important
publicly available lncRNA-related databases about se-
quence, expression, function, etc.

• Developing effective computational models to predict
potential lncRNA–disease associations from heteroge-
neous biological data could benefit not only better
understanding of human complex diseases mechan-
ism at lncRNA level but also biomarker detection for
complex human diseases diagnosis, treatment, prog-
nosis and prevention

• LncRNA–disease associations could be predicted based
on powerful computational models in the three ways,
including machine learning-based models, network-
based models and models without the need to rely on
known lncRNA–disease associations.

• Various computational models for potential lncRNA–
disease association prediction have their advantages
and disadvantages.

• Making full use of different types of heterogeneous
data sources could benefit more effective identification
of new lncRNA–disease interactions.
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