IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2014

2077

Efficient Parallel Framework for HEVC Motion
Estimation on Many-Core Processors

Chenggang Yan, Yongdong Zhang, Senior Member, IEEE, Jizheng Xu, Senior Member, IEEE,
Feng Dai, Jun Zhang, Qionghai Dai, Senior Member, IEEE, and Feng Wu, Fellow, IEEE

Abstract— High Efficiency Video Coding (HEVC) provides
superior coding efficiency than previous video coding standards
at the cost of increasing encoding complexity. The complexity
increase of motion estimation (ME) procedure is rather signif-
icant, especially when considering the complicated partitioning
structure of HEVC. To fully exploit the coding efficiency brought
by HEVC requires a huge amount of computations. In this
paper, we analyze the ME structure in HEVC and propose a
parallel framework to decouple ME for different partitions on
many-core processors. Based on local parallel method (LPM),
we first use the directed acyclic graph (DAG)-based order
to parallelize coding tree units (CTUs) and adopt improved
LPM (ILPM) within each CTU (DAGILPM), which exploits
the CTU-level and prediction unit (PU)-level parallelism. Then,
we find that there exist completely independent PUs (CIPUs)
and partially independent PUs (PIPUs). When the degree of
parallelism (DP) is smaller than the maximum DP of DAGILPM,
we process the CIPUs and PIPUs, which further increases the
DP. The data dependencies and coding efficiency stay the same
as LPM. Experiments show that on a 64-core system, compared
with serial execution, our proposed scheme achieves more than
30 and 40 times speedup for 1920 x 1080 and 2560 x 1600 video
sequences, respectively.

Index Terms— Coding efficiency, degree of parallelism (DP),
efficient parallel framework, High Efficiency Video Coding
(HEVC), many-core processors, motion estimation (ME).

I. INTRODUCTION

IGH Efficiency Video Coding (HEVC) is the state-

of-the-art video coding standard [2]-[5]. Compared
with H.264/Advanced Video Coding (AVC), HEVC doubles
the coding efficiency [6], which is largely benefited from
more sophisticated motion estimation (ME) design [7], [8].
The price to be paid for higher coding efficiency is higher
computational complexity. The HEVC encoders are expected

Manuscript received November 4, 2013; revised February 24, 2014, May 21,
2014, and June 20, 2014; accepted June 30, 2014. Date of publication July 8,
2014; date of current version December 3, 2014. This work was supported
in part by the National Key Technology Research and Development Program
of China under Grant 2012BAH06B01 and in part by the National Nature
Science Foundation of China under Grants 61472203, 61272323, 61102101,
and 61379084. This paper was recommended by Associate Editor W. Zeng.

C. Yan is with the Key Laboratory of Intelligent Information Processing,
Chinese Academy of Sciences, Institute of Computing Technology, Beijing
100190, China, and also with the Department of Automation, Tsinghua
University, Beijing 100084, China.

Y. Zhang, F. Dai, and J. Zhang are with the Key Laboratory of Intelligent
Information Processing, Chinese Academy of Sciences, Institute of Computing
Technology, Beijing 100190, China (e-mail: zhyd@ict.ac.cn).

J. Xu and F. Wu are with Microsoft Research Asia, Beijing 100190, China.

Q. Dai is with the Department of Automation, Tsinghua University, Beijing
100084, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2014.2335852

to be several times more complex than H.264/AVC encoders
[9], [10]. The HEVC ME is the most computationally
expensive operation in the HEVC encoder [11]. Video
coding has been restricted in many fields because of its high
complexity [12]-[19]. As a result, it is important to accelerate
HEVC, especially ME.

We are witnessing a paradigm shift in computer architec-
ture toward many-core processors [20]-[23], which are good
candidates for speeding up HEVC ME. A central question
is whether HEVC ME can scale to such a large number
of cores. If HEVC ME is not extensively parallelizable,
cores will be left unused and its performance might suffer.
Efficient parallelization of ME on many-core processors is
challenging, because ME has complicated data dependencies
which provides insufficient degree of parallelism (DP) for so
many cores [24], [25]. In addition, parallelization may have
significant coding efficiency loss [26]-[28].

In general, there are two ways to parallelize ME on many-
core processors: 1) global parallel method (GPM) [26]-[28]
and 2) local parallel method (LPM) [24], [25]. The GPM
provides a high DP but has nonignorable coding efficiency
loss; LPM has ignorable coding efficiency loss but the DP of
LPM is not adequate for many-core processors. The GPM is
widely adopted for H.264/AVC ME [26]-[28]. First, ME is
carried out in parallel for all the 4 x 4 submacroblocks (MBs)
within the same frame. Then, ME of other sub-MB partitions
can be obtained in parallel by the ME of 4 x 4 sub-MB.
The GPM eliminates the data dependencies among blocks
within the same frame and provides a high DP for H.264/AVC
ME. However, GPM takes no account of the data dependencies
among the block partitions, which has nonignorable coding
efficiency loss. The HEVC ME is highly sequential and
has a highly flexible hierarchy of unit representation [29].
If we apply GPM directly to HEVC ME, it will lead to
significant coding efficiency loss. The HEVC includes three
block concepts [29]: 1) coding tree unit (CTU); 2) coding
unit (CU); and 3) prediction unit (PU). The PUs are the basic
units used for ME. The LPM introduces the concept of ME
region (MER) [24], [25] and divides each CTU into a number
of nonoverlapped parallel MERs. From MER to MER, ME is
carried out sequentially. Within each MER, ME is carried out
in parallel for all the PUs. The LPM has been adopted into the
HEVC standard. The LPM eliminates the data dependencies
among PUs within the same MER, which has little coding
efficiency loss. However, the MERs and CTUs have to be
processed sequentially. The maximum DP of LPM is still very
insufficient to keep the coding efficiency from losing too much.

1051-8215 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2078

For example, in the HEVC setting, the maximum DP is 8
which is not adequate for many-core processors.

On the premise of keeping data dependencies the same as
LPM, we further analyze the dependencies in different levels
of data granularity within the same frame. Based on LPM, we
propose an efficient parallel framework for HEVC ME, which
largely increases the DP than LPM. Meanwhile, the coding
efficiency of our method stays the same as LPM, which is
much better than GPM.

1) We use the directed acyclic graph (DAG)-based order
to parallelize CTUs and adopt improved LPM (ILPM)
within each CTU (DAGILPM). The data dependen-
cies among neighboring CTUs are caused by the PUs.
The current CTU has data dependencies on its neigh-
boring left, upper, upper-left, and upper-right CTUs.
We generate a DAG [30], [31] to capture the depen-
dency relationships among neighboring CTUs. We use
the DAG-based order to parallelize CTUs, which
exploits the implicit CTU-level parallelism. Meanwhile,
we adopt ILPM within each CTU, which increases the
PU-level parallelism than LPM. The maximum DP of
DAGILPM reaches 495 and 660 for 1920 x 1080 and
2560 x 1600 video sequences, respectively.

2) After DAGILPM, there is an insufficient DP at the begin-
ning and at the end of processing a frame. After carefully
reviewing all the PUs, we find that there exist completely
independent PUs (CIPUs) and partially independent PUs
(PIPUs). The CIPUs have no data dependencies on
other PUs within the same frame. The PIPUs have no
data dependencies on other PUs within the same CTU.
When the DP is smaller than the maximum DP of
DAGILPM, we process the CIPUs and PIPUs, which
further increases the DP. The data dependencies and
coding efficiency stay the same as LPM.

A part of this paper has been presented in [1]. Based on our
previous work [1], we further use ILPM and find the PIPUs.
The DAG-based order was also used for deblocking filter [14],
intra-mode decision [31], [32], and CU partitioning tree deci-
sion [33]. This paper uses the DAG-based order to parallelize
ME. Our proposed parallel framework is suitable to many-core
processors. Our testing processor is a Tile64 [32]. Experiments
demonstrate that our proposed method significantly improves
the performance compared with GPM and LPM.

The rest of this paper is organized as follows. Section II
gives a review of HEVC ME and related work. Section III
presents the proposed highly parallel framework for
HEVC ME. The experimental results are elaborated in
Section IV. Finally, Section V concludes this paper.

II. HEVC ME AND RELATED WORK
A. HEVC Motion Estimation

The HEVC provides a highly flexible hierarchy of unit rep-
resentation for ME, which includes three block concepts [29]:
CTU, CU, and PU (Fig. 1). Hierarchy of unit representation
has been proved effective [34]-[36]. Each frame is divided
into CTUs, which can be recursively split into smaller CUs
by using a generic quadtree segmentation structure. The CU

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2014

Prediction
Units (PUs)
CTU CTU CTU
/ CU CU
CTU CTU CTU
a | |
CU
CU CcU
CTU CTU CTU
Fig. 1. Flexible hierarchy of unit representation for ME.

0]

——f 8

ag a agta;

PR p—

8 agta;taytas

az az agtag

Fig. 2. GPM for H.264/AVC ME. First, SAD of all 4 x 4 sub-MB partitions
are calculated. SAD of 8 x 4,8 x 8, ... sub-MB partitions are obtained by
the summation of different combination of SAD of 4 x 4 sub-MB partitions.

can be further split into PUs, which have eight partition modes
used for ME. The PUs are the basic units used for carrying the
motion data related to ME. If a neighboring PU is coded, it will
be available for the current PU. The current PU may have data
dependencies on its neighboring left, left-down, upper, upper-
left, and upper-right PUs, whose motion data may be available
for the current PU [2].

B. Related Work

The GPM eliminates the data dependencies among all the
blocks within the frame, which provides a high DP and has
nonignorable coding efficiency loss. The LPM eliminates the
data dependencies among all the blocks within the same MER,
which has ignorable coding efficiency loss. But, the DP of
LPM is not adequate for many-core processors.

1) GPM for H.264/AVC ME: Parallelization of ME is an
afterthought in H.264/AVC, where GPM is widely adopted
[26]-[28]. H.264/AVC supports MB partitioning with variable
block sizes. The luma component of each MB could be divided
into four partition modes: 16 x 16, 8§ x 16, 16 x 8, and
8 x 8 pixels. As shown in Fig. 2, if an 8 x 8 partition
is selected, each 8 x 8 block can be further divided into
sub-MB partitions: 8 x 8, 4 x 8, 8 x 4, and 4 x 4 pixels. The
GPM first calculates the sum of absolute differences (SAD)
values of all 4 x 4 sub-MB partitions within a frame. Then,
the SAD values of 8 x 4,8 x 8,... sub-MB partitions are
obtained by the summation of different combination of SAD
of 4 x 4 sub-MB partitions. Then, GPM chooses the best ME
mode among all the candidates. All the 4 x 4 SAD calculation
can be processed in parallel and GPM provides a high DP for
ME. However, GPM takes no account of the data dependencies
among the block partitions, which has nonignorable coding
efficiency loss.

2) LPM for HEVC ME: If we apply GPM directly to HEVC
ME, all the PUs are unavailable for each other within the
frame. The GPM leads to significant coding efficiency loss

YAN et al.: EFFICIENT PARALLEL FRAMEWORK FOR HEVC ME

MERO MERI1
» -
D available PU
D PUO pPU2 PU3 (coded)
PU5
PU1 PU
r PUG navailable PU
L (same MER)
PU8
PUT E 4“ unavailable PU
(not coded)
PU9

— —
MER2 liH]WEﬁ3

Fig. 3. Example of MER and available PUs for PUI, PUS, and PU9.

although it provides a high DP. The LPM [24], [25] introduces
the concept of MER and divides each CTU into a number of
nonoverlapped MERs. All the MERs are exact square shapes
with the same size. The LPM introduces a new availability
rule for PUs.

Fig. 3 shows an example of MER and available PUs for
PU1, PUS, and PU9. There are four MERs within the CTU.
From MERO to MER3, ME is carried out sequentially. All the
PUs residing in the same MER are unavailable for each other.
Within the same MER, ME is carried out in parallel for all
the PUs. For example, PU8 and PU9 are within MER3 and
unavailable for each other. When processing MER3, PU8 and
PU9 have no data dependencies on each other. So, they can
be processed in parallel. The maximum DP of LMP (MPypnm)
can be expressed as

S(MER) M xM
min(S(PU)) 32
where M is the length of MER, S(MER) indicates the pixel
number of MER, and S(PU) indicates the pixel number of PU.
When the size of PU is 8 x 4 or 4 x 8, S(PU) will reach the
minimum. In order to guarantee the coding efficiency, M is
commonly equal to 16 or 8 today [24], [25]. So, the MPpm

is equal or less than 8. Thus, LPM cannot provide a sufficient
DP for many-core processors.

MPipym = ey

III. HIGHLY PARALLEL FRAMEWORK FOR HEVC ME

In this section, on the premise of keeping data dependencies
and coding efficiency the same as LPM, we will first generate
a DAG [30] to capture the dependency relationships among
neighboring CTUs. We will use the DAG-based order to paral-
lelize CTUs and adopt ILPM within each CTU (DAGILPM).
Then, we will find the CIPUs and PIPUs. When the DP is
smaller than the maximum DP of DAGILPM, we will process
the CIPUs and PIPUs.

A. DAG Improved LPM

1) Data Dependencies Among Neighboring CTUs: In this
section, we will analyze the data dependencies among neigh-
boring CTUs. The CTUs are processed in row scanning order.

2079

CTU

Fig. 4. Data dependencies among neighboring CTUs. The arrows indicate
dependencies.

CIU CTu CIU
(1,1 (1,2) (1,3)
CTU CTU CTU
@D 2,2 (2,3)
CIU CTu CIU
CY (3,2) (3,3

(a) (b)

Fig. 5. (a) Each CTU in the frame is mapped into a point in a 2-D coordinate
plane. (b) DAG for representing the dependency relationships of CTUs.

The data dependencies among neighboring CTUs are caused
by the PUs. When processing the current CTU, the PUs
within the current CTUs neighboring left-down CTU are not
coded yet, which will be unavailable for the PUs in the
current CTU. So, the current CTU has no data dependency
on its adjacent left-down CTU. Meanwhile, the PUs in the
current CTUs neighboring left, upper, upper-left, and upper-
right CTUs are coded. The current CTU has data dependencies
on its neighboring left, upper, upper-left, and upper-right CTUs
(Fig. 4). The arrows indicate dependencies. When processing
the current CTU, the left, upper, upper-left, and upper-right
CTUs should have been completely processed if they exist.
2) DAG for CTUs: After analyzing the data dependencies
among neighboring CTUs, we generate a DAG to capture the
dependency relationships of CTUs. As shown in Fig. 5(a),
we first map each CTU in the frame into a point in a 2-D

coordinate plane as
' il £ 2)
i = ceil| —
w

j = kmod W 3)

where i is coordinate value of the horizontal axis, j is
coordinate value of the vertical axis, k is the time stamp of the
CTU, W is the horizontal CTU number of the frame, and the
ceil function returns the value of a number rounded upward
to the nearest integer.

Then, we use a DAG to represent the execution flow of the
CTUs and the precedence constraints among the CTUs [30].
As shown in Fig. 5(b), the DAG is marked as G = (V, E),
which consists of a set of vertices V and edges E. Vertices

2080

Condition matrix

i 0 1 1

Dispatcher 2 4 3
queue
2 4 3
! .
Many—-cord Core0 | Corel | Core2
platform
Core3d | Cored

Fig. 6. DAG-based order to parallelize CTUs.

are numbered according to the coordinate values of CTUs
in the 2-D coordinate plane. For example, vertex v;; in
Fig. 5(b) represents the CTU with coordinate values (7, j) in
Fig. 5(a). If vertex vy, has data dependency on v; ;, vertex
v;j is a parent of vertex v,,, and there will exist an edge
(vi,j,vm,n) € E. When vertex v; ; is processed, vertex v; ;
and edge (v; j,vm,n) Will be removed from the DAG. The
precedence constraint means that when the in-degrees of some
vertices are zero, these vertices can be processed in parallel.
In order to parallelize the vertices, it is important to record
and update the in-degrees of all the vertices. We get the initial
values of the in-degrees by the adjacency matrix. We generate
the adjacency matrix A of the DAG as

A _ 1, (l)i’j,l)mjn)EE
(61):0mm) =10, otherwise
st. 1<i,m<H 1<jn<W 4)

where H is the vertical CTU number of each frame, and A is
a 2-D matrix.

The initial in-degree D,, , of vertex v,,, in the DAG can
be summarized as

H W
z Z (6,7, (m,n)

1j
S.t. 1< §H l<n<W 5)

where D is a 2-D matrix, which represents the initial state of
the in-degrees of the DAG.

3) Parallelizing CTUs Using DAG-Based Order: After
getting the initial values of the in-degrees, we use a
DAG-based order to parallelize the CTUs as shown in
Fig. 6. The condition matrix (CM) is a 2-D matrix, which
is designed to record the number of related CTUs for each
CTU. The initial value of CM is set equal to D. When
some entries in CM are zero, the corresponding CTUs can
be processed in parallel. When a CTU with coordinate (i, j)
in CM is processed, the entries of coordinates (i + I, j),
(i+1, j—1),(, j+1),and (i+1, j+1) in CM will minus one.
Furthermore, the dispatcher queue (DQ) is a waiting queue,
whose elements are the coordinates of available CTUs. The
pseudocode of the DAG-based order is expressed as follows.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2014

CUssize = 16
PU | PU|PU PU
PU
PU PU
PUPU|| py ||PUPU
PO
CUsize=8 CUsize=8 CUsize=8 CUsize=8
PU PU PU PU
PU PU PU PU
PU|PU PU(PU PU(PU PU|PU
PU PU PU PU
Fig. 7. Example of ILPM. The length of MER is 16. Within the same

MER, all the PUs with different partition modes in different CU depths can
be processed in parallel.

1) Step I: Initialize DQ and CM. DQ is a waiting queue.
CM is designed to record the number of related CTUs
for each CTU.

2) Step 2: When some entries in CM become zero, get the
corresponding coordinates and push them into DQ.

3) Step 3: Get coordinates from DQ and process corre-
sponding CTUs in parallel on many-core processor.

4) Step 4: Update CM. When a CTU with coordinate
(i, j) in CM is processed, the entries of coordinates
G+14,),G+1j-1),G, j+1),and (i+1, j+ 1) in CM
will minus one.

5) Step 5: Repeat above steps 2—4 until each frame is over.

B. Improved LPM

After using the DAG-based order to parallelize CTUs, we
adopt ILPM within each CTU, which exploits the implicit
PU-level parallelism. The ILPM is based on LPM [24], [25].
The LPM introduces the concept of MER and divides each
CTU into a number of nonoverlapped MERs. All the MERs are
exact square shapes with the same size. When a CTU is being
processed, the MERs within the CTU are being processed
sequentially. The CTUs can be recursively split into smaller
CUs by using a generic quadtree segmentation structure.
The CU has at most eight partition modes for PUs. Within the
same MER, the PUs with the particular partition mode can be
processed in parallel. We go further than LPM. We mark the
MER as the root node of a quadtree. Then, we generate the
depth of the quadtree (N) as

N =log, M -3 (6)

where M is the length of MER.

Within the same MER, CUs can be recursively split into
smaller CUs using a generic quadtree segmentation structure.
All the PUs with different partition modes in different CU
depth can be processed in parallel. Fig. 7 shows an example
of ILPM, where the length of MER is 16. There are three
and seven partition modes used in 8 x 8 and 16 x 16 CU,
respectively. Because all the partition modes belong to the
same MER, they are unavailable for each other and have no
data dependencies. The ME is carried out in parallel for all
the partition modes.

YAN et al.: EFFICIENT PARALLEL FRAMEWORK FOR HEVC ME

1123 4/5/6|7|8|9 1]
314567891011 I
5067 8[9/10/11]12]13 3|3
71819 10[11]12/13|14]15 4| 4
91011121314151617‘555%
11121314 15[16 | 17 [18|19 [+eeeeeeeeee
1314 15|16 |17 18|19 |20 |21 \25 25|25 J
151617181920 |21 |22 |23 26 | 26
1718|1920 |21 |22 |23 |24 |25 27 | 27
192021222324 2526 |27 28
21222324 25|26 27|28 29 29
Fig. 8. Example of DAG-based order to parallelize the CTUs for a frame.

The DP of ILPM can be described as

fn) =4x% f(n+l) + P, (7
5 n=3

Po=113 n<3 ®)

f(N) =Py)

where f(n) is the total DP when the depth of the coding tree
is set to n, and P, is the DP of the given CU size at the
nth level. For example, as shown in Fig. 7, N and f(N) are
1 and 5, respectively. The total DP of the quadtree is 33, which
is much larger than that of LPM.

C. Parallelism Analysis of DAGILPM

The processing time of CTUs is different from each other.
In order to analyze the maximum DP conveniently, we assume
all the processing time of CTUs is the same. An example
of DAG-based order to parallelize the CTUs for a frame is
illustrated in Fig. 8. Rectangles represent CTUs, which are
processed according to their numbers. The CTUs with the
same numbers are processed concurrently. The maximum DP
of CTU (MPcTty) can be calculated as

. a4
MPcry = min (0611(7) s H).

After adopting ILPM within each MER, the maximum DP
of DAGILPM (MPpagiLpm) can be summarized as

(10)

Y

Table I compares the maximum DP of LPM with that of
DAGILPM. The size of CTU is usually set as 64 x 64 [2].
MPpagipm is much larger than MPrpy. When the size
of MER is 16 x 16, MPpagiLpm reaches 495 and 660 for
1920 x 1080 and 2560 x 1600 video sequences, respectively.

From Fig. 8, we find that the DP of DAGILPM is low at the
beginning and at the end of processing a frame, which is not
believed to be adequate for many-core processors. There are
many idle cores at the beginning and at the end of processing

MPpagiLepm = MPcty x MPyLpym.

2081

TABLE I
MAaXxiMUM DP oF LPM AND DAGILPM

Resolution of MER Resolution of CTU MPpy MPpaGiLpm
8x8 832x480 2 35
8x8 1280x720 2 50
8x8 1920x1080 2 75
8x8 2560x1600 2 100

16x16 832x480 8 231
16x16 1280x720 8 330
16x16 1920x1080 8 495
16x16 2560x1600 8 660
O « .
(xP, yP)
CIPU

Fig. 9. MERs neighboring left, left-down, upper, upper-left, and upper-right
PUs are available for PUs within the MER.

a frame, which influences the performance. The average DP
(ADP) can be calculated as

1 + MPctu

7 12)

ADP = () x MPLpMm.

D. CIPUs and PIPUs

In order to further increase the ADP, we process the CIPUs
and PIPUs when the DP is smaller than MPpagiLpm. The
CIPUs have no data dependencies on other PUs within the
same frame. The PIPUs have no data dependencies on other
PUs within the same CTU.

1) Completely Independent PUs: On the basis of LPM, we
find out CIPUs. The CTUs and MERs in a frame are processed
sequentially in scan order. So only the MERs neighboring left,
left-down, upper, upper-left, and upper-right PUs are available
for PUs within the MER (Fig. 9). For example, PU9 has data
dependencies on MER3’s neighboring left and upper-left PUs
(Fig. 3). If PUs within the MER have no data dependencies
on the MERs neighboring left, left-down, upper, upper-left,
and upper-right PUs, they will have no data dependencies on
all the PUs within the frame. The CIPUs meet the following
conditions.

1) A CIPUs left boundary and the corresponding MERs

left boundary do not overlap.

2) A CIPUs upper boundary and the corresponding MERs

upper boundary do not overlap.

The neighboring PUs of the CIPU belong to the same
MER or are not coded, which are unavailable for the CIPU.
For example, as shown in Fig. 3, PU5 meets requirements
of CIPU. PUS and its neighboring left, left-down, upper,

2082

PIPU
MER"’
CTU ~-__ CTU ~-__
(a) (b
Fig. 10. (a) PIPUs left boundary and the corresponding MERs left boundary

do not overlap. Meanwhile, the PIPUs upper boundary and the CTUs upper
boundary overlap. (b) PIPUs upper boundary and the corresponding MERs
upper boundary do not overlap. Meanwhile, the PIPUs left boundary and the
CTUs left boundary overlap.

and upper-left PUs all belong to the MERI. Meanwhile, its
neighboring upper-right PU is not coded yet. So, PU5 has
no data dependencies on its neighboring PUs. PUS can be
processed at anytime within the frame. Let (x P, y P) be the
coordinates of the top-left corner pixel of the current PU. The
current PU is CIPU if the following condition satisfies:

xPmodM#0 and yP mod M #0 (13)

where mod is modulus operation.

2) Partially Independent PUs: When processing the cur-
rent CTU, the left, upper, upper-left, and upper-right CTUs
should have been completely processed. The PUs within the
neighboring left, upper, upper-left, and upper-right CTUs are
coded. If the available PUs of the current PU all belong to the
neighboring left, upper, upper-left, and upper-right CTUs, the
current PU is a PIPU. As shown in Fig. 10, we further define
PIPUs, which meet the following conditions.

1) A PIPUs left boundary and the corresponding MERs left
boundary do not overlap. Meanwhile, the PIPUs upper
boundary and the CTUs upper boundary overlap.

2) A PIPUs upper boundary and the corresponding MERs
upper boundary do not overlap. Meanwhile, the PIPUs
left boundary and the CTUs left boundary overlap.

For example, as shown in Fig. 3, the available PUs of PU1
all belong to neighboring left CTU. PUI can be processed
at anytime within the current CTU. Let (x P, yP) be the
coordinates of the top-left corner pixel of the current PU.
The current PU is a PIPU if one of the following conditions
satisfies:

xPmodM #0 and yPmodC =0
xPmodC=0 and yPmod M #0

where C is the length of CTU.

(14)
5)

E. Summarization of Proposed Method

On the premise of keeping data dependencies and coding
efficiency the same as LPM, we propose a highly parallel
framework for HEVC ME.

1) First, we generate a DAG to capture the dependency

relationships among neighboring CTUs. We use the
DAG-based order to parallelize CTUs and adopt ILPM

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2014

Thread Pool ((((I

-
Y S

Work Queues
Queue0 ‘ ‘ ‘ ‘
Queuel ‘ ‘ ‘ ‘
Queue2 ‘ ‘ ‘ ‘
~ o
Queue4 ‘ ‘ ‘ ‘
Fig. 11. Thread pool and work queues in our implementation.

within each CTU (DAGILPM), which exploits the
implicit DP.

2) Then, we find the CIPUs and PIPUs. When the DP is
smaller than the maximum DP of DAGILPM or the
number of processing cores, we process the CIPUs and
PIPUs, which further increases the DP.

IV. EXPERIMENTAL RESULTS
A. Input Stream and Environment Conditions

To compare our proposed method with LPM [24] and GPM,
we adopt an encoder migrated from HEVC reference software
HM12.0 [37] without any optimization. The input videos in
our experiments contain a list of standard test sequences with
64 frames. We select the configuration of randomaccess_main.
The default encoding test conditions are specified in [37] using
different quantization parameters (QPs) (22, 27, 32, and 37).
If no otherwise specified, the fast search in the HM software
is applied. The experiment platform of this paper is based on
Tile64, which is a member of TILERA many-core processor
family and contains 64 processing cores [32].

B. Implementation

In order to avoid the impact of special processors, we do
not utilize any processor-dependent optimizations. As shown
in Fig. 11, in order to ease the costs of frequent thread creating
and destroying, we construct a thread pool at the beginning of
encoding process. Thread pool is especially well suited to the
TILERA architecture since the pool can be spread among the
cores, with each one running a single thread. When a thread
finishes its work, it will stay in the thread pool. There are

YAN et al.: EFFICIENT PARALLEL FRAMEWORK FOR HEVC ME

TABLE II
BD-RATE PERFORMANCE OF GPM COMPARED WITH HM12.0

Resolution of

Sequences GPM
Sequences
832x480 Flowervase 52.29%
832x480 Keiba 53.82%
832x480 Mobisode 75.30%
1280x720 KristenAndSara 51.44%
1280x720 SlideEditing 23.52%
1280x720 SlideShow 43.03%
1920x1080 Tennis 62.16%
1920x1080 BasketballDrive 80.42%
1920x1080 Kimonol 52.13%
2560x1600 Traffic 47.01%
2560x1600 PeopleOnStreet 31.06%
2560x1600 Nebuta 50.22%
Average 50.9%

five work queues, denoted as queue0, queuel, queue2, queue3,
and queue4. We define five kinds of works: 1) ME for a
particular CTU (work_CTU); 2) ME for a particular MER
(work_ MER); 3) ME for a particular CIPU (work_CIPU);
4) ME for a particular PIPU (work_PIPU); and 5) ME for
a particular PU which is not a CIPU or a PIPU (work_PU).
Work_CTU is put into the queueO; work_MER is put into
the queuel; work_PU is put into the queue2; work_PIPU is
put into the queue3; and work_CIPU is put into the queue4.
All the works are scheduled in a first-in-first-out manner in
the work queues. The priorities of the queues are set as
queue0> queuel > queue2 > queue3>queued. Idle threads in the
thread pool try to fetch the works from the queues according
to their priorities. Initially, we serialize all the work_CIPUs
available in the queue4. A master thread keeps track of the
state of the CTUs using a CM (Section III-A) and serializes
the work_CTUs available in the queueQ. All the threads have
access to the CM located in the shared memory. When a thread
has finished the work_CTU, it will update the CM. During
running process, a work itself may generate and put other
works into the queues. Specifically, work_CTU may generate
work_MER and work_PIPU, which will be put into queuel
and queue3, respectively. Work_MER may generate work_PU
and put it into queue2. Section III shows the rule of how a
work generates other works.

When we implement LPM, there are no work CTU,
work_PIPU, work_CIPU, queue0, queue3, and queue4. Mean-
while, it is different from ILPM for a work_MER to generate
work_PUs (Section III-A). When we implement DAGILPM,
there are no work_PIPU, work_CIPU, queue3, and queue4
(Section III-B). Serial execution just uses one processing core.

C. Coding Efficiency Analysis

The coding efficiency of all the methods is com-
pared in terms of combined Bjgntegaard delta bitrates
(BD-rate) [38], [39], which is calculated by the average PSNR
of different color components. Although there are other video
quality assessment approaches [40], the PSNR-based video
quality measurement is widely used during the development

2083

TABLE III
BD-RATE PERFORMANCE OF DIFFERENT METHODS COMPARED WITH
HM12.0. DAGILPM MEANS THE BD-RATE PERFORMANCE OF OUR
PROPOSED METHOD WITHOUT USING CIPUs AND PIPUs. THE SI1ZE
OF MER Is 8 x 8. BD-RATE PERFORMANCES OF LPM, DAGILPM, AND
OUR PROPOSED METHOD COMPARED WITH HM12.0 ARE THE SAME

Resolution of

Sequences Sequences LPM DAGILPM Proposed
832x480 Flowervase 0.3% 0.3% 0.3%
832x480 Keiba 0.0% 0.0% 0.0%
832x480 Mobisode 0.0% 0.0% 0.0%
1280x720 KristenAndSara 0.3% 0.3% 0.3%
1280x720 SlideEditing -0.4% -0.4% -0.4%
1280x720 SlideShow 0.1% 0.1% 0.1%
1920x1080 Tennis 0.1% 0.1% 0.1%
1920x1080 BasketballDrive 0.1% 0.1% 0.1%
1920x1080 Kimonol 0.2% 0.2% 0.2%
2560x1600 Traffic 0.4% 0.4% 0.4%
2560x1600 PeopleOnStreet 0.2% 0.2% 0.2%
2560x1600 Nebuta 0.3% 0.3% 0.3%
Average 0.1% 0.1% 0.1%

TABLE IV

BD-RATE PERFORMANCE OF DIFFERENT METHODS COMPARED WITH
HM12.0. THE S1ZE OF MER IS 16 x 16. BD-RATE PERFORMANCES
OF LPM, DAGILPM, AND OUR PROPOSED METHOD COMPARED
WITH HM12.0 ARE THE SAME

Resolution of

Sequences LPM DAGILPM Proposed
Sequences
832x480 Flowervase 0.9% 0.9% 0.9%
832x480 Keiba 0.5% 0.5% 0.5%
832x480 Mobisode 0.6% 0.6% 0.6%
1280x720 KristenAndSara 0.7% 0.7% 0.7%
1280x720 SlideEditing 0.1% 0.1% 0.1%
1280x720 SlideShow 0.5% 0.5% 0.5%
1920x1080 Tennis 0.5% 0.5% 0.5%
1920x1080 BasketballDrive 0.6% 0.6% 0.6%
1920x1080 Kimonol 0.5% 0.5% 0.5%
2560x1600 Traffic 1.0% 1.0% 1.0%
2560x1600 PeopleOnStreet 1.2% 1.2% 1.2%
2560x1600 Nebuta 0.5% 0.5% 0.5%
Average 0.6% 0.6% 0.6%
of HEVC [41]. The average PSNR is calculated as
6 %« PSNRy + PSNRy + PSNRy
PSNR g = . (16)

8

The BD-rate performances of all the methods compared
with HM12.0 are shown in Tables II-IV. The positive number
means coding efficiency loss. We find that GPM causes the
BD-rates to a serious increase of 50.9% on average, while
LPM, DAGILPM, and our proposed methods have little effect
on coding efficiency. The BD-rate performances of LPM,
DAGILPM, and our proposed method compared with HM12.0
are the same.

Fig. 12 shows the rate-distortion encoding efficiency with
different methods for different video sequences. The curves for
HM12.0, LPM, and our proposed method almost overlap in the
figure, which show that the rate-distortion efficiency of LPM
and our proposed method is almost as high as that of HM12.0.
However, the encoding efficiency of GPM is much lower than

2084

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2014

Fig. 12.

42
v - / —~*
40
i /k‘ -
2 2
e e 38
Z a5 g / /
a ——HM12 a 37 ——HM12
@ @
g —-M=3 £36 F / =M=
E a3 == Proposed,M=8 E 35 / f —— Proposed,M=8
——M=16 e r / ——M=16
4, ‘ J == Proposed,M=16 / == Proposed,M=16
—0—GPM Bk J —0—GPM
39 T T 32 T
0 50 100 150 200 250 300 350 0 500 1,000 1,500 2,000 2,500
Bitrate(kbps) Bitrate(kbps)
(@) (b)
46 49
15 | i —8 47 /! o
. /7 &
) =
= / Z43
Z2 z /
a ——HM12 a 41 ——HM12
Ha1 &
3 / —&—M=8 £ —&—M=8
g 40 —s— Proposed,M=8 5 e Proposed,M=8
i J / ——M-=16 37 ——M=16
J —+— Proposed,M=16 // / —+— Proposed,M=16
38 &
=0—=GPM ./ =0—=GPM
37 T 33 T T T
0 200 400 600 800 1,000 1,200 400 500 600 700 800 900 1,000 1,100 1,200 1,300
Bitrate(kbps) Bitrate(kbps)
() (d)
43 43
2 _——= e 2 /./.
a1 /‘7 a1 //
i 40 / i 40 { /
= =
Z 30 Z 30
- / ——HM12 Z / / ——HM12
[[
?38 / / —B—M=8 ?38 / —a—M=8
23 5 4 Proposed:M=8 237 J 4 Proposed:M=8
36 / ——M=16 36 / ——M=16
/ === Proposed,M=16 J === Proposed,M=16
35 35
[} —0—GPM —6—GPM
34 T T T 1 34 T T T 1
0 500 1,000 1,500 2,000 2,500 0 1,000 2,000 3,000 4,000 5,000
Bitrate(kbps) Bitrate(kbps)
(e ®
43 43
- //. / 42 /y"
41 / / 41 /
= =40
=) il
= / / x39
539 5 .y
o { / ——HM12 a38 e HM 12
o o
gt [/ —E=M8 £37 —8-M=8
g 37 / / ——Proposed,M=8 53 . —#— Proposed,M=8
36 ——M=16 58 / / ——M-=16
. ‘ J ==t Proposed, M=16 ‘ / ==t Proposed,M=16
b —8—GPM 24 —8—GPM
34 T T T T T T 1 33 T T T T T T 1
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000
Bitrate(kbps) Bitrate(kbps)
® (b)

Comparing the rate-distortion efficiency of different methods for different video sequences (QPs 22, 27, 32, and 37). M represents the length

of MER. (a) Flowervase_832 x 480. (b) Keiba_832 x 4480. (c) KristenAndSara_1280 x 4720. (d) SlideEditing 1280 x 4720. (e) Tennis_1920 x 41080.
(f) BasketballDrive_1920 x 41080. (g) Traffic_2560 x 41600. (h) PeopleOnStreet_2560 x 41600.

other methods because GPM takes no account of the data

dependencies among the block partitions, which significantly
increases the bit rates.

D. Parallelism Analysis

To compare the DP of our method with that of other
methods for ME, time scale is normalized as shown in Fig. 13.

Time slot is calculated as

Time interval(s)

: 10
Total time(s)

Time slot =

a7

where the Total time(s) is the total consuming time of one
frame, and the Time interval(s) starts from processing one
frame to the Time slot. We averagely sample ten DPs in the

YAN et al.: EFFICIENT PARALLEL FRAMEWORK FOR HEVC ME

2085

zz *‘A—A—?—.—-—ﬁ

zz " \\ ——LPM

15 / \'\ —@—DAGILPM
)

10 \ === Proposed
5 F

1 2 3 4 5 6 7 8 9 10
Time slot

Parallelism

Parallelism
[
(=]
™~~~

h ——LPM
15 / \ ~#i—DAGILPM

10 ,J \ ~#— Proposed

1 2 3 4 5 6 7 8 9 10

Time slot

(@

(b)

60

50 -“—H?—.T
40

o)}
=]

wu
o
'

=0 / l\ ——DAGILPM
20

\ = Proposed
10 / \k

1 2 3 4 5 6 7 8 9 10

Time slot

40
: i AN i, \
2 k]
% 30 ——LPM % 30 ——LPM
& / ‘\\ —8—DAGILPM & / % —8—DAGILPM
20 20
\ i —— Proposed —— Proposed
10 'y 10 —i
0 . ; ; ; ; . ; . ; : 0 T ; ; ; ; - ; T ; :
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Time slot Time slot
(©) ()
70 70
60 { 60 F/
50 / \ 50 / \
E 40 E 40
3 F, \\l LM = p’ \ ——LPM
[REN E a0
g / \ —B—DAGILPM = / * —m—DAGILPM
20 —#— Proposed 20 x —&— Proposed
10 --/ 10 —J
0 - - - 0 - - -
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Time slot Time slot
(e) ®
70 70
AhA—h—h—E——a—
60 \ 60
50 / \ 50
£ § 40
2 \ ——LPM 5 K \ ——LPM
[] =
& [
£ £

N w
=} S}
\

—l—DAGILPM
& === Proposed

1 2 3 4 5 6 75 8 9 10

Time slot

._\
(=]
[1

o

(8

(h)

Fig. 13. Comparing the DP for ME among LPM, DAGILPM, and our proposed method. QP = 32, M = 8. DAGILPM means the DP of our proposed
method without using CIPUs and PIPUs. The DP of our proposed method is much higher than that of LPM and DAGILPM. (a) Flowervase_832 x 480.
(b) Keiba_832 x480. (c) KristenAndSara_1280 x 720. (d) SlideEditing_1280x 720. (e) Tennis_1920x 1080. (f) BasketballDrive_1920x 1080. (g) Traffic_2560 x

1600. (h) PeopleOnStreet_2560 x 1600.

timeline for every frame. Then, we calculate the ADP for every
time slot.

As shown in Fig. 13, DAGILPM means the DP of
our proposed method without using CIPUs and PIPUs.
The DP of DAGILPM and our proposed method is much
higher than that of LPM. The DP of DAGILPM is low at the

beginning and at the end of processing a frame. Our proposed
method is less affected and maintains a higher DP. Most of
the time, the DP of our approach is equal to the maximum
DP of DAGILPM or the number of processing cores. We
also find that the DP of our proposed method is low at the
end of processing the frame, because there are not enough

2086

TABLE V
AVERAGE SPEEDUP OF OUR PROPOSED METHOD COMPARED WITH
SERIAL EXECUTION USING 64 CORES FOR ME, WHOSE MOTION
SEARCH IS FAST SEARCH M REPRESENTS THE LENGTH OF MER

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2014

TABLE VIII
SPEEDUP OF OUR PROPOSED METHOD COMPARED WITH SERIAL
EXECUTION FOR THE ENCODER USING 64 CORES, QP =32. M
REPRESENTS THE LENGTH OF MER

Resolution QP=27 QP=27 QP=32 QP=32

Resolution of

M=8 M=16 M=8 M=16 Sequences Sequences M=8 M=16
832x480 11.14 16.66 12.08 21.17 832x480 Flowervase 2.45 2.56
1280x720 11.69 25.98 14.01 33.08 832x480 Keiba 2.06 2.17
1920x1080 15.40 29.25 14.77 34.82 832x480 Mobisode 2.69 2.90
2560x1600 17.82 4233 22.02 4736 1280x720 KristenAndSara 1.93 1.96
1280x720 SlideEditing 2.28 2.34
1280x720 SlideShow 2.21 2.25
TABLE VI 1920x1080 Tennis 2.64 2.73
AVERAGE SPEEDUP OF OUR PROPOSED METHOD COMPARED WITH 1920x1080 BasketballDrive 2.68 2.79
1920x1080 Kimonol 2.05 2.09
SERIAL EXECUTION USING 64 CORES FOR ME, WHOSE MOTION 2560x1600 Traffic 238 241
SEARCH IS FULL SEARCH. M REPRESENTS THE LENGTH OF MER 2560x1600 PeopleOnStreet 2.32 2.36
2560x1600 Nebuta 2.58 2.61
Resolution QP=27 QP=27 QP=32 QP=32
V=8 V=16 V=3 M=16 Average 2.36 2.43
832x480 13.18 17.29 13.19 22.67
1280x720 13.26 29.14 14.33 3436 can be calculated as
1920x1080 17.77 34.92 16.88 42.39 T
serial
2560x1600 20.70 46.92 26.03 54.10 SLpm = (18)
Trpm
Tserial
TABLE VII SDAGILPM = 77— (19)
TpaGILPM
PERCENTAGE OF TIME SPENT ON THE ME IN THE ENCODER T
serial
USING A SINGLE CORE SProposed = = (20)
TProposed

Resolution of

Sequences Sequences
832x480 Flowervase 73.90%
832x480 Keiba 66.34%
832x480 Mobisode 79.00%
1280x720 KristenAndSara 60.69%
1280x720 SlideEditing 68.77%
1280x720 SlideShow 67.63%
1920x1080 Tennis 75.31%
1920x1080 BasketballDrive 75.90%
1920x1080 Kimonol 63.74%
2560x1600 Traffic 69.80%
2560x1600 PeopleOnStreet 68.91%
2560x1600 Nebuta 72.93%
Average 70.24%

CIPUs and PIPUs at the end of processing a frame. The DP
of our proposed method and DAGILPM dependents on the
resolution of the frame. As the resolution of frames becomes
smaller, the DP of DAGILPM and our proposed method is
reduced.

E. Speedup Analysis

Fig. 14 shows the speedup of all the methods compared with
serial execution for ME using 64 cores. Serial execution just
uses one processing core. DAGILPM means the speedup of our
proposed method without using CIPUs and PIPUs compared
with serial execution. Fig. 15 shows the speedup of LPM and
our proposed method compared with serial execution for ME
with different number of cores. The speedup of LPM (SLpm),
DAGILPM (SpagiLpm), and our proposed method (Sproposed)

where Tierial, TLPM» TDAGILPM, and Tproposed are, respectively,
the ME time of serial execution, LPM, DAGILPM, and our
proposed method. Tables V and VI show the average speedup
of our proposed method compared with serial execution for
ME using 64 cores. The numbers are the average ratios of
serial execution running time of ME to that using our proposed
method. Table VII shows the percentage of time spent on the
ME in the encoder using a single core. Table VIII shows the
speedup of our proposed method compared with serial execu-
tion for the encoder using 64 cores. From Figs. 14 and 15 and
Tables V-VIII. We have the following five major observations.

1) As the length of MER (M) increases (Fig. 14), LPM,
DAGILPM, and our method all speed up much more
quickly than serial processing. This is mainly because
the DP of LPM, DAGILPM and our method increase as
shown in (1) and (11).

2) As the resolution of frame increases (Fig. 14), the
speedup of LPM is nearly unchanged because the
DP of LPM stays the same. On the contrary, the speedup
of DAGILPM and our method increases because the
DP of DAGILPM and our method increases as shown
in (10) and (11).

3) As the number of cores increases (Fig. 15), our method
speeds up more quickly than LPM because our method
fully utilizes the increasing number of cores. When the
number of cores is more than 14, the speedup of LPM
is unchanged because the DP of LPM is not sufficient
for the increasing number of cores. We also find that
when the number of cores is more than the DP of our
method, the speedup of our method will not increase
as well. In general, our method can use more number of
cores than LPM.

YAN et al.: EFFICIENT PARALLEL FRAMEWORK FOR HEVC ME

2087

20 37.22
35 Akmm—rmtm—- Hupuht‘ui 32293049
30
=3 -~ - 44
R 19.55 “4%0.)
T 20 T
g2 .]
wy
10 - Hn
>]] E ﬁ
0 i
+@<> K +§9 5\9 6@9 G\(\w" @qp '@%Q '@@ \@B @G \@Q
& F P F PSS o S
PN SNy o oY PN D
; S B - .
& T e B
& & & & @ & § & &
" ¥ o N = &
< .{;@? g 9 $é° \& <°
& & S
() (b)

Fig. 14. Speedup of LPM, DAGILPM, and our proposed method compared with serial execution for ME using 64 cores. DAGILPM means the speedup of
our proposed method without using CIPUs and PIPUs compared with serial execution using 64 cores. (a) QP =32, M = 8. (b) QP =32, M = 16.

25 33
—4—M=8(LPM) —li—M=8(Proposed) ——M=8(LPM) == M=8(Proposed)
= 2707
o LA M=16(PM) —<—M=16(Proposed) | ___ 1957 28 = = ‘/5_9;(__’4
23
16:3 18.70 /z_sg
s 15 218 : :
= s 17.90
a 2
= 10 11.14 208
8
5
3
284 A o m— s ——— o —
1.43 . : : : ; :
0 \ \ \ \ . !) 2 14 26 38 50 62
2 14 Nzl?mber of CO?F’SS 50 62 Number of cores
(a) (b)
Fig. 15. Speedup of LPM and our proposed method compared with serial execution for ME with different number of cores. M represents the length of

MER. (a) Mobisode_832 x 480, QP = 32. (b) SlideShow_1280 x 720, QP = 32.

4) HEVC ME is the most computationally expensive opera-
tion in the HEVC encoder (Table VII). After the speedup
of ME, compared with serial execution, our proposed
method achieves averagely more than two times speedup
for the encoder (Table VIII). One of our future work
directions is to find efficient parallel methods for other
processing stages in the encoder and to find an efficient
parallel framework for HEVC encoder.

5) Our proposed method accelerates a lot more than
LPM and DAGILPM. Compared with serial execution,
our proposed method achieves averagely more than
30 times speedup for ME.

V. CONCLUSION

Efficient parallelization of HEVC ME on many-core proces-
sors is challenging. In general, there are two ways to paral-
lelize ME on many-core processors: 1) GPM and 2) LPM.
The GPM provides a high DP but has nonignorable coding
efficiency loss; LPM has ignorable coding efficiency loss

but the DP of LPM is not adequate for many-core proces-
sors. Based on LPM, we propose an efficient parallel frame-
work for HEVC ME. After analyzing the data dependencies
among neighboring CTUs, we generate a DAG to capture the
dependency relationships of CTUs. We use the DAG-based
order to parallelize CTUs and adopt ILPM within each CTU
(DAGILPM), which exploits the implicit DP. Then, we process
the CIPUs and PIPUs at the beginning and at the end of
processing a frame, which further increases the DP. Experi-
ments conducted on a Tile64 processor demonstrate that our
method accelerates more than LPM. Meanwhile, the coding
efficiency of our method stays the same as LPM, which is
much better than GPM.

We also find that the DP of our proposed method is
low at the end of processing the frame, which will influ-
ence the performance. One of our future work directions is
to keep a high DP. Meanwhile, we will also try to find
efficient parallel methods for other processing stages in the
encoder and to find an efficient parallel framework for HEVC
encoder.

2088

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2014

REFERENCES

C. Yan, Y. Zhang, F. Dai, and L. Li, “Highly parallel framework
for HEVC motion estimation on many-core platform,” in Proc. Data
Compress. Conf., Mar. 2013, pp. 63-72.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

R. Sjoberg et al., “Overview of HEVC high-level syntax and reference
picture management,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1858-1870, Dec. 2012.

M. Zhou, W. Gao, M. Jiang, and H. Yu, “HEVC lossless coding and
improvements,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1839-1843, Dec. 2012.

C. Yeo, Y. H. Tan, and Z. Li, “Dynamic range analysis in High Efficiency
Video Coding residual coding and reconstruction,” IEEE Trans. Circuits
Syst. Video Technol., vol. 23, no. 7, pp. 1131-1136, Jul. 2013.

J. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand,
“Comparison of the coding efficiency of video coding
standards—Including High Efficiency Video Coding (HEVC),” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1669-1684,
Dec. 2012.

A. Krutz, A. Glantz, M. Tok, M. Esche, and T. Sikora, “Adaptive global
motion temporal filtering for High Efficiency Video Coding,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1802-1812,
Dec. 2012.

A. Abou-Elailah, F. Dufaux, J. Farah, M. Cagnazzo, and
B. Pesquet-Popescu, “Fusion of global and local motion estimation for
distributed video coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 23, no. 1, pp. 158-172, Jan. 2013.

F. Bossen, B. Bross, K. Siihring, and D. Flynn, “HEVC complexity and
implementation analysis,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 12, pp. 1685-1696, Dec. 2012.

J. Vanne, M. Viitanen, T. D. Hdméldinen, and A. Hallapuro, “Com-
parative rate-distortion-complexity analysis of HEVC and AVC video
codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,
pp. 1885-1898, Dec. 2012.

G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz, “Per-
formance and computational complexity assessment of high-efficiency
video encoders,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1899-1909, Dec. 2012.

Y. Zhang, C. Yan, F. Dai, and Y. Ma, “Efficient parallel framework
for H.264/AVC deblocking filter on many-core platform,” /IEEE Trans.
Multimedia, vol. 14, no. 3, pp. 510-524, Jun. 2012.

C. C. Chi et al., “Parallel scalability and efficiency of HEVC paralleliza-
tion approaches,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1827-1838, Dec. 2012.

C. Yan, Y. Zhang, F. Dai, X. Wang, L. Li, and Q. Dai, “Parallel
deblocking filter for HEVC on many-core processor,” Electron. Lett.,
vol. 50, no. 5, pp. 367-368, Feb. 2014.

N. Ramzan, H. Park, and E. Izquierdo, “Video streaming over P2P net-
works: Challenges and opportunities,” Signal Process., Image Commun.,
vol. 27, no. 5, pp. 401-411, May 2012.

S. Shi, C.-H. Hsu, K. Nahrstedt, and R. Campbell, “Using graphics
rendering contexts to enhance the real-time video coding for mobile
cloud gaming,” in Proc. 19th ACM Int. Conf. Multimedia, Nov. 2011,
pp. 103-112.

Z. Gu, W. Lin, B.-S. Lee, and C. T. Lau, “Rotated orthogonal transform
(ROT) for motion-compensation residual coding,” IEEE Trans. Image
Process., vol. 21, no. 12, pp. 4770-4781, Dec. 2012.

V. Sze and A. P. Chandrakasan, “A highly parallel and scalable CABAC
decoder for next generation video coding,” IEEE J. Solid-State Circuits,
vol. 47, no. 1, pp. 8-22, Jan. 2012.

N.-M. Cheung, X. Fan, O. C. Au, and M.-C. Kung, “Video coding on
multicore graphics processors,” IEEE Signal Process. Mag., vol. 27,
no. 2, pp. 79-89, Mar. 2010.

E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware shared
resource management for multi-core systems,” in Proc. Int. Symp. High-
Perform. Comput. Archit., Jun. 2011, pp. 141-152.

M. Annavaram, “A case for guarded power gating for multi-
core processors,” in Proc. Int. Symp. Comput. Archit., Feb. 2011,
pp- 291-300.

E. Bini et al., “Resource management on multicore systems: The

ACTORS approach,” IEEE Micro, vol. 31, no. 3, pp. 72-81,
May/Jun. 2011.
ClearSpeed. The CSX600 Processor. [Online]. Available:

http://www.clearspeed.com

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

M. Zhou, AHGI0: Configurable and CU-group Level Parallel
Merge/skip, document JCTVC-H0082, Feb. 2012.

Q. Yu, L. Zhao, and S. Ma, “Parallel AMVP candidate list construction
for HEVC,” in Proc. Vis. Commun. Image Process., 2012, pp. 1-6.
Y.-L. Huang, Y.-C. Shen, and J.-L. Wu, “Scalable computation for spa-
tially scalable video coding using NVIDIA CUDA and multi-core CPU,”
in Proc. ACM Int. Conf. Multimedia, Oct. 2009, pp. 361-370.

E. Marth and G. Marcus, “Parallelization of the x264 encoder using
openCL,” in Proc. ACM SIGGRAPH, Jul. 2010, pp. 1-72.

Z. Xiao and B. M. Baas, “A 1080p H.264/AVC baseline residual encoder
for a fine-grained many-core system,” IEEE Trans. Circuits Syst. Video
Technol., vol. 21, no. 7, pp. 890-902, Jul. 2011.

I.-K. Kim, J. Min, T. Lee, W.-J. Han, and J. Park, “Block partitioning
structure in the HEVC standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 22, no. 12, pp. 1697-1706, Dec. 2012.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Reading, MA, USA: Addison-Wesley, 1974,
p. 52.

N.-M. Cheung, O. C. Au, M.-C. Kung, P. H. W. Wong, and C. H. Liu,
“Highly parallel rate-distortion optimized intra-mode decision on mul-
ticore graphics processors,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 19, no. 11, pp. 1692—1703, Nov. 2009.

C. Yan, Y. Zhang, F. Dai, J. Zhang, L. Li, and Q. Dai, “Efficient parallel
HEVC intra-prediction on many-core processor,” Electron. Lett., vol. 50,
no. 11, pp. 805-806, May 2014.

C. Yan et al., “A highly parallel framework for HEVC coding unit par-
titioning tree decision on many-core processors,” IEEE Signal Process.
Lett., vol. 21, no. 5, pp. 573-576, May 2014.

J. E. Fowler, S. Mun, and E. W. Tramel, “Block-based compressed
sensing of images and video,” Found. Trends Signal Process., vol. 4,
no. 4, pp. 297416, Mar. 2012.

R. Joshi, Y. Reznik, and M. Karczewicz, Simplified Transforms for
Extended Block Sizes, document VCEG Contribution VCEG-AL19,
Jul. 2009.

M. Karczewicz et al., “A hybrid video coder based on extended
macroblock sizes, improved interpolation, and flexible motion repre-
sentation,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 12,
pp. 1698-1708, Dec. 2010.

F. Bossen, Common Test Conditions and Software Reference Configura-
tions, document JCTVC-N1006, Jul. 2013.

G. Bjontegard, Calculation of Average PSNR Differences Between RD-
Curves, document VCEG-M33, Austin, TX, USA, Apr. 2001.

G. Bjontegard, Improvement of BD-PSNR Model, document VCEG-
All1, Berlin, Germany, Jul. 2008.

K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,
“Study of subjective and objective quality assessment of video,” IEEE
Trans. Image Process., vol. 19, no. 6, pp. 1427-1441, Jun. 2010.

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in
image/video quality assessment,” Electron. Lett., vol. 44, no. 13,
pp- 800-801, Jun. 2008.

Chenggang Yan received the Ph.D. degree from the
Institute of Computing Technology, Chinese Acad-
emy of Sciences, Beijing, China, in 2013.

He is a Post-Doctoral Research Fellow with the
Department of Automation, Tsinghua University,
Beijing. His research interests include parallel com-
puting, video coding, computational photography,
computer vision, and multimedia communication.

YAN et al.: EFFICIENT PARALLEL FRAMEWORK FOR HEVC ME

Yongdong Zhang (M’08-SM’13) received the
Ph.D. degree in electronic engineering from Tianjin
University, Tianjin, China, in 2002.

He is a Professor with the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China. He has authored over 100 refereed jour-
nal and conference papers. His research interests
include multimedia content analysis and understand-
ing, multimedia content security, video encoding,
and streaming media technology.

Prof. Zhang serves as an Editorial Board Member
of Multimedia Systems Journal and Neurocomputing. He received the Best
Paper Awards in PCM 2013, ICIMCS 2013, and ICME 2010, and the Best
Paper Candidate in ICME 2011.

Jizheng Xu (SM’10) received the B.S. and M.S.
degrees in computer science from University of
Science and Technology of China, Hefei, China,
and the Ph.D. degree in electrical engineering from
Shanghai Jiao Tong University, Shanghai, China.

He joined Microsoft Research Asia, Beijing,
China, in 2003, where he is currently a Lead
Researcher. He has been an active contributor to
ISO/MPEG and ITU-T video coding standards.
He has over 30 technical proposals adopted by
H.264/AVC, H.264/AVC scalable extension, High
Efficiency Video Coding (HEVC), HEVC range extension and HEVC screen
content coding standards. He chaired and co-chaired the ad hoc group of
exploration on wavelet video coding in MPEG, as well as various technical
ad hoc groups in JCT-VC, e.g., screen content coding, parsing robustness,
and lossless coding. He has authored or co-authored over 80 conference and
journal refereed papers. He co-organized and co-chaired special sessions on
scalable video coding, directional transform, and high-quality video coding at
various conferences. He holds 30 U.S. granted or pending patents in image and
video coding. His research interests include image and video representation,
media compression, and communication.

Dr. Xu was the 2014 Special Session Co-Chair of the IEEE International
Conference on Multimedia and Expo.

Feng Dai was born in 1979. He received the M.S.
and Ph.D. degrees from the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China, in 2008.

He is an Associate Professor with the Multimedia
Computing Group, Advanced Research Laboratory,
Institute of Computing Technology, Chinese Acad-
emy of Sciences, Beijing. His research interests
include video coding, transmission, and processing.

2089

Jun Zhang received the B.E. degree from Xidian
University, Xi’an, China, in 2009. He is currently
working toward the Ph.D. degree with the Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing, China.

His research interests include video coding and
computer vision.

Qionghai Dai (SM’05) received the B.S. degree in
mathematics from Shanxi Normal University, Xi’an,
China, in 1987, and the M.E. and Ph.D. degrees in
computer science and automation from Northeastern
University, Shenyang, China, in 1994 and 1996,
respectively.

He has been a Faculty Member with Tsinghua Uni-
versity, Beijing, China, since 1997. He is currently
a Cheung Kong Professor with Tsinghua University
and the Director of the Broadband Networks and
Digital Media Laboratory. His research interests
include signal processing and computer vision and graphics.

Feng Wu (M’99-SM’06-F’13) received the B.S.

degree in electrical engineering from Xidian Univer-

sity, Xi’an, China, in 1992, and the M.S. and Ph.D.

degrees in computer science from Harbin Institute

W\ of Technology, Harbin, China, in 1996 and 1999,

\ respectively.

- He was a Principle Researcher and Research Man-

- ager with Microsoft Research Asia, Beijing, China.

/ He is currently a Professor with University of Sci-

\ . ence and Technology of China, Hefei, China. He

’ has authored or co-authored over 200 high-quality

papers (including several dozens of the IEEE transaction papers) and top

conference papers on MOBICOM, SIGIR, CVPR, and ACM MM. He holds 77

granted U.S. patents. His 15 techniques have been adopted into international

video coding standards. His current research interests include image and video
compression, media communication, and media analysis and synthesis.

Prof. Wu was an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEM FOR VIDEO TECHNOLOGY, IEEE TRANSACTIONS ON MUL-
TIMEDIA, and several other international journals. He also was the TPC Chair
in MMSP 2011, VCIP 2010, and PCM 2009, and Special Sessions Chair in
ICME 2010 and ISCAS 2013. He received the IEEE Circuits and Systems
Society 2012 Best Associate Editor Award. As a co-author, he received the
Best Paper Award in IEEE T-CSVT 2009, PCM 2008, and SPIE VCIP 2007.

F e

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

