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Abstract—Image content analysis is an important surround
perception modality of intelligent vehicles. In order to efficiently
recognize the on-road environment based on image content
analysis from the large-scale scene database, relevant images
retrieval becomes one of the fundamental problems. To improve
the efficiency of calculating similarities between images, hashing
techniques have received increasing attentions. For most existing
hash methods, the suboptimal binary codes are generated, as the
hand-crafted feature representation is not optimally compatible
with the binary codes. In this paper, a one-stage supervised
deep hashing framework (SDHP) is proposed to learn high-
quality binary codes. A deep convolutional neural network is
implemented, and we enforce the learned codes to meet the
following criterions: 1) similar images should be encoded into
similar binary codes, and vice versa; 2) the quantization loss
from Euclidean space to Hamming space should be minimized;
and 3) the learned codes should be evenly distributed. The method
is further extended into SDHP+ to improve the discriminative
power of binary codes. Extensive experimental comparisons with
state-of-the-art hashing algorithms are conducted on CIFAR-10
and NUS-WIDE, the MAP of SDHP reaches to 87.67% and
77.48% with 48 b, respectively, and the MAP of SDHP+
reaches to 91.16%, 81.08% with 12 b, 48 b on CIFAR-10 and
NUS-WIDE, respectively. It illustrates that the proposed method
can obviously improve the search accuracy.

Index Terms— Intelligent vehicles, binary codes, supervised
hashing, image retrieval, deep learning.
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I. INTRODUCTION

VER the past decade, there has been significant research
Oeffort dedicated to the development of intelligent
driver assistance systems and autonomous vehicles, which
is intended to enhance safety by monitoring the on-road
environment [1]. Image content analysis as an important envi-
ronment sensing modality has immensely progressed in recent
years.

One of the fundamental problems in image content analysis
to efficiently recognize the environment is retrieving relevant
contents from a large different scene database [2], which
encourages approximate nearest neighbor (ANN) search pros-
perous [3]. To reduce the computational cost in calculating
similarities, hashing techniques have attracted broad attentions
in the Big Media research area due to the efficiency of compact
binary codes [4], [5]. It aims to construct a series of hash
functions to map data points from the original space into
compact binary codes and preserve the data structure in the
original space. Hashing is a powerful technique for nearest
neighbor search with hamming distance computation [6]-[8],
because bit-wise XOR operation is performed to calculate
the individual similarity, which is advantageous for improv-
ing computational efficiency. In addition, the compact binary
codes are also beneficial for storage efficiency compared to
real-valued representations.

Existing hashing techniques can be classified into
two categories: data-independent [9]-[13] and data-
dependent [14]-[18]. For the first category, random projections
are employed to map data points into a feature space, then
binarization are performed. For the second category, various
statistical learning techniques are utilized to learn hash
functions. In the pipelines of most existing hashing methods,
input image is firstly represented by a vector of hand-crafted
visual descriptors (e.g., GIST [19], HOG [20]) to capture
the image semantics against image noise and redundant
information [21]. Secondly, the projection and quantization
steps are employed to encode the vector into a binary code.
The retrieval performance of conventional hashing methods is
limited, mainly resulting from two aspects: on the one hand,
the fixed hand-crafted features represent the visual similarities
of images rather than the semantic similarities [22]. On the
other hand, feature representation and projection are mostly
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studied as two separated problems, which leads to the
suboptimal binary codes generated, as the hand-crafted
feature representation is not optimally compatible with the
binary codes.

Recent revolution in deep learning [23] shows the impres-
sive feature representation power of Convolutional Neural
Network (CNN) [24]-[26], which has been demonstrated by
the progress in many visual tasks, such as image classifi-
cation [24], [27], [28], object detection [29], face recogni-
tion [30] and so on [31], [32]. The accomplishments are
attributed to the ability of CNN, which can learn the rich
mid-level image representation to capture the semantic infor-
mation [33]. Hashing techniques also benefit from the
improvement of CNN to obtain high-quality binary codes with
the semantic features of images. Recently, several CNN-based
hashing methods have been proposed, such as CNNH [34],
DNNH [35], and so on [36]-[40], which have testified
the satisfactory performance of binary codes obtained by
CNN-based hashing. With the development of CNN, it is
necessary to study new algorithms to learn more effec-
tive binary codes with less bits and make full use
of supervised information to capture more representative
features.

In this paper, a novel one-stage supervised deep hash-
ing framework with pairwise labels information (SDHP)
is proposed to learn compact binary codes for large-scale
image search. Fig. 1 presents the basic idea of the pro-
posed approach. The framework overcomes aforementioned
problems of conventional hashing methods and utilizes the
feature representation power of CNN to capture the semantic
similarities of images. Unlike most existing methods which
seek linear projection to map data points into binary codes.
In this framework, the design of hash function is based on
CNN for learning a nonlinear transformation, and it builds
an end-to-end relation between raw image pixels and binary
codes for fast retrieval. The optimization of the model is
under several constrains at the top layer of the deep network
with stochastic gradient descent (SGD) method and back-
propagation (BP) algorithm.

The contributions of the paper are summarized as follows:

o A deeper CNN is implemented as the basic network
to capture the rich mid-level feature representation, and
the pairwise images are organized as the inputs of the
network to take advantages of supervised information.
In order to preserve the semantic similarities of pairwise
images, a pairwise loss function is devised to enforce
similar images to map into similar binary codes, and the
binary codes of dissimilar images should be as different
as possible.

e Due to the fact that the quantization error of the
real-valued outputs from Euclidean space to Hamming
space is inevitable, and the more evenly distributed
binary codes are, the more information can be carried.
To obtain high-quality compact binary codes, we define
two loss functions: first, the quantization loss function
encourages the error from Euclidean space to Hamming
space minimized. Second, a even distribution loss func-
tion compels the binary codes to be evenly distributed.

These two optimization objectives are employed to the
hash layer of the deep network.

o In order to further improve the discriminative power
of binary codes and make full use of the supervised
information, we extend SDHP into SDHP+ by integrating
a new layer with the classification information into the
deep neural network framework. At the same time, this
layer is also enforced to preserve the semantic similarities
of pairwise images. The double restrictions make the
learned binary codes achieve better search accuracy.

Extensive experimental comparisons are conducted between
our method and several state-of-the-art hashing algorithms
on two standard image retrieval datasets CIFAR-10 and
NUS-WIDE. The MAP of SDHP reaches to 87.67% and
77.48% with 48-bit respectively, and the MAP of SDHP-+
can reach to 91.16%, 81.08% with 12 bits, 48 bits on
CIFAR-10 and NUS-WIDE respectively. It illustrates that the
proposed method can obviously improve the search accuracy,
and SDHP+ can achieve better search performance even with
less bits. The satisfactory experimental results demonstrate
that the proposed method is supposed to be effective for
environment perception of intelligent vehicles based on image
content analysis.

The rest of this paper is organized as follows. Section II
presents some related works on hashing techniques. Section IIT
elaborates the details of the proposed framework and details
the optimizing methods of obtaining high-quality binary codes.
Section IV shows the extensive experimental results on large-
scale real-world image corpus CIFAR-10 and NUS-WIDE.
Section V concludes the paper.

II. RELATED WORK
A. Conventional Hashing

Recently, hashing is becoming an important technique for
fast approximate nearest neighbor search. Generally speak-
ing, existing hashing methods can be categorized into data-
independent and data-dependent methods. Data-independent
methods randomly generate hash functions which is indepen-
dent of any training data. Locality-Sensitive Hashing (LSH) [9]
is a typical data-independent method, which uses random
linear projections to map data into binary codes. It has been
proven that the Hamming distance between two binary codes
asymptotically approaches the distance in the original feature
space with the code length increasing, which results in the
necessary of generating long codes to achieve satisfactory
performance.

Data-dependent methods attempt to learn similarity-
preserving hash functions from the training data, which can
be further divided into unsupervised and supervised methods,
depended on whether supervised information (e.g., the class
labels of images) is involved. Representative unsupervised
exemplars include Spectral Hashing (SH) [14], which obtains
balanced binary codes by solving a spectral graph partitioning
problem. Wang et al. propose PCA-Hash (PCA-H) [15] which
is a data-dependent projection learning method such that each
hash function is designed to correct the errors made by the
previous one sequentially. Gong and Lazebnik [16] propose
an Iterative Quantization (ITQ) method by simultaneously
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The framework of the proposed method. The first part is SDHP: the network is trained using image pairs and the label information of images. The

learned binary codes should meet the criterions: (a) similar images should be encoded into similar binary codes, and vice versa; (b) the loss of quantization
should be minimized; (c) the binary codes should be evenly distributed. The second part is SDHP+: the framework is extended by adding a classification

layer to make full use of supervised information.

maximizing the variance of each bit, and minimizing the
quantization error of mapping data to the vertices of a binary
hypercube.

To obtain semantic similarity for learning hash functions,
supervised methods are proposed. In recent years, supervised
hashing has attracted more and more attentions because it has
better search accuracy than unsupervised methods in many
applications. Representative supervised algorithms include
Supervised Hashing with Kernels (KSH) [41], Supervised Dis-
crete Hashing (SDH) [17] , Column Sampling based Discrete
Supervised Hashing (COSDISH) [18], etc. Liu et al. propose
KSH [41] which is a kernel-based method. It learns binary
codes by minimizing the Hamming distance between similar
pairs and maximizing the distance between dissimilar pairs.
SDH [17] leverages label information to obtain binary codes
by integrating the generation of hash codes and classifier
training, which directly optimize the binary codes to over come
the shortcomings of relaxation. COSDISH [18] is a discrete
supervised hashing method which can leverage all training data
points solving the problem of FastH [42] that cannot utilize
all training points due to high time complexity.

B. Deep Hashing

Deep learning learns a hierarchical rich mid-level feature
representation that can well capture the semantic informa-
tion of images. In recent years, CNN-based visual descrip-
tors have been applied on the task of image retrieval.
Krizhevsky et al. [24] firstly utilize the feature from the
seventh layer of the model for classification, which has
achieved impressive performance on ImageNet. Subsequently,
more deeper and effective networks are proposed [27], [43].
To our knowledge, semantic hashing [44] is the first using deep
learning for hashing. However, the model employs stacked

Restricted Boltzmann Machine (RBM) to learn binary codes
which is complex and not efficient for practical application.
With the boosting studies of Convolutional Neural Network
for image classification, CNN-based hashing is researched
recently. Xia et al. [34] propose a supervised hashing method
CNNH to learn compact binary codes which takes CNN to
learn a set of hash functions for the first time, and demonstrate
the possibility of CNN applying to hash. However, CNNH is a
two-stage method, a matrix-decomposition algorithm applied
for learning binary codes in the preprocessing stage. It is
unfavorable when the data size is large. Moreover, the learned
image feature cannot be used to learn better binary codes due
to the separated stages. Subsequently, Lai et al. [35] improve
CNNH by proposing a one-stage CNN-based hashing method
DNNH for simultaneous feature learning and hashing coding,
which enforces the image representation and hash coding to
improve each other in a joint learning process. It presents
better performance on several benchmarks. However, many
hyper-parameters need to be adjusted in this model for better
performance.

III. APPROACH

In this section, the proposed framework is detailed as
illustrated in Fig. 1. In order to incorporate feature representa-
tion learning and hash coding into an end-to-end framework,
we bring up a one-stage supervised hashing method based
on deep learning. The learned binary codes are enforced to
meet the following criterions: (a) to preserve the semantic
relationship of pairwise images, similar images should be
encoded into similar binary codes and vice versa; (b) the
quantization error from Euclidean space to Hamming space
should be minimized; (c) the learned codes should be evenly
distributed to carry more information. The pipeline of our
method includes three steps: firstly, the training images are
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organized to pairs, and we train the network with pairwise
images and labels information. Secondly, the parameters of the
network are optimized with aforementioned criterions. Thirdly,
quantization is employed to generate the binary codes from the
real-valued outputs of the network. The method for learning
compact binary codes is described in detail as follows.

A. Deep Architecture

The training process of the deep architecture includes
two main components: the first is network initialization, and
the second is optimization. Considering that many famous
models have been proposed for classification, and it is demon-
strated the effectiveness of these CNN models. The net-
works have been transferred to many visual tasks which have
achieved great success. In this paper, for the first initialization
component, GooglLeNet [27] is applied to hashing as the
basic framework for the first time, which is pre-trained on the
large-scale ImageNet dataset [24]. The dataset contains more
than 1.2 million images categorized into 1,000 object classes.
Therefore, we mainly focus on the design of hashing layer
to adapt to hashing task. The classification layer is replaced
with a new fully connected layer with ¢ units, and each unit is
associated with one bit, which is enforced to learn approximate
binary codes. For the second component, the network for
hashing is fine-tuned on the specific image retrieval datasets
with stochastic gradient descent (SGD) method and back-
propagation (BP) algorithm. The details of optimizing the
network will be described in the next part.

B. Formulation

To train the network for hashing, several optimization
objectives are devised to obtain high-quality binary codes. The
proposed method organizes the training images into pairwise
samples. Assuming Q to be the image space, for a pair of
images /1 and I, the goal is to map the images from original
space into Hamming space: Q — {41, —1}9. Each image is
represented by a g-bit binary code, hence the binary codes
of I;, I» are defined as b, bs.

We enforce every image and its latter image in a batch
to be a pair, therefore suppose the number of the images
in a batch is n, the number of pairs is C,% = (n—n—z')vzv The
inputs of the network are organized into pairwise images.
Meanwhile, a pairwise loss function is devised to enforce
similar images mapping into similar binary codes, and the
Hamming distance between the binary codes of dissimilar
images should be as large as possible. The loss function can
preserve the semantic relationship of pairwise images, which
can be written as:

1
EH(bl,bZ) §=1
Wi(b1, by) =

Emax(t — H(b1,02),0) §=0
s.t. by e {—1,+1}4, i €{1,2},
. [1 Iy and I are semantically similar

0 Iy and I, are semantically dissimilar,

ey

where H(-,-) denotes the Hamming distance between two
binary codes, and ¢ is a threshold. This formula means that
the loss of two similar images is their Hamming distance,
the greater Hamming distance of the pairwise images is,
the more loss will be produced. Otherwise the Hamming
distance of two dissimilar images which is within the threshold
can contribute to the loss. S denotes whether the pair of images
are similar to each other. If two images are similar, S = 1,
otherwise S = 0.

It would be very preferable to directly use the pairwise
loss function to train the network with back-propagation
algorithm. However, it is difficult to use Eqn. 1 due to its non-
differentiable property. To handle this problem, a commonly
used method is to utilize sigmoid or tanh to restrict the outputs
to be within [—1, 1], which relaxes the integer constraint
into range constraint. But this kind of methods will result
in restraining the convergence of the network. So we relax
the binary limitation by replacing the Hamming distance
with Euclidean distance to get the real-valued outputs of the
network, and replace {—1, 1} with [—1, 1]. Eqn. 1 can be
rewritten as:

1 2
Slb1 = ball S=1

Wi(b1, ba) =
Smax(t —l1bi — by]I>,0) S=0

st bie[—1,+119, ief{l,2}. 2)

The [>-norm is utilized to measure the distance between
the outputs of the network. With the aforementioned pairwise
loss function, the network is trained with mini-batch gradient
descent method using back-propagation algorithm. The gradi-
ent of Eqn. 2 w.r.t. b;, i € {1, 2} can be computed as:

oW,

= ()b —b 3
b, (=D (b1 = b2) (3)
oW1 [ (=Di(b1 —ba) |Ib1 —ba|* <1t
obi |0 b1 — b2 ||* = 1
sit.bpe[—1,+117, ie{l,2}, 4)
when § = 1, the gradient can be computed as Eqn. 3,

otherwise S = 0, the gradient can be computed as Eqn. 4.

Due to the fact that the outputs of the network are relaxed
to be real-valued, the process to map the outputs into binary
codes from Euclidean space to Hamming space will produce
quantization loss. After obtaining the outputs of the network,
the last simple quantization step can be written as:

b =sign(), 5)

where v is the outputs of our network and sign(v) is the sign
function on the output vectors that sign(v(i)) = 1 if v (i) > 0,
otherwise sign(v(i)) = —1,fori =1,2,...,q.

To overcome the quantization loss from Euclidean space
to Hamming space and preserve the information of original
data, a quantization loss function is proposed, which can be
written as:

1 q
Wy = 52 IbG) — v @)1, (6)
i=1
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where b(i) denotes the i-th bit of the binary code, ¢ denotes
the length of binary code and v (i) represents one of the
network real-valued output units. We calculate the differ-
ence between the original outputs v(i) and the result of
quantization b(i).

According to the information theory, the higher entropy is,
the more information can be carried. We encourage the com-
pact binary codes to be evenly distributed in order to increase
the information capacity. When the probability of 1 or —1
in each bit is more close to 50% respectively, the more infor-
mation can be carried. So the average of all bits is enforced
to be close to zero. The loss function can be defined as:

q 2

>

j=1

1 n
- > bi(j)—0
L

W3 )

1
q

i=
where b;(j) denotes j-th bit of i-th binary code, n denotes
the number of binary codes.

With aforementioned loss functions, the proposed method
enforce the network to preserve the semantic similarity of
pairwise images. At the same time, the loss of quantization
and uneven distribution are minimized to obtain high-quality
binary codes.

The final loss function can be written as:

C2
1 n
W= 2 El (SH (b1, b2) + (1 — S)max(t — H (b1, b2), 0))

1 &1 g _ s
+EZ;ZHbiu>—vi(nn
i=1 j=1
2

; ()

C. SDHP+

The pairwise images are organized to preserve the original
semantic relationship of images as mentioned in Section III-B,
which only utilize the similarity relation between the pairwise
labels. The learning of the hash functions are not associated
with the individual class information. Due to the fact that the
discrete class labels of the individual images are also available
and the classification power has been demonstrated in [27],
an additional idea is come up, which extends the framework
to further improve the sematic feature discriminative power of
the learned binary codes, and make full use of the supervised
information. The framework is defined as SDHP+, which
integrates the class label information of each training image
into the network. A new fully connected layer is added to the
network on the juxtaposition with the hashing layer, which
has ¢ units representing ¢ classes, so the top layer of the
network has ¢ + ¢ units in total. It can be regarded as a
transfer learning case in which the incorporated additional
image class labels predicting is expected to be helpful for
learning a more accurate image representation such that it may
be advantageous for the learning of hashing functions.

Two optimization objectives are employed to the new layer
of the deep network. Firstly, L(i,z) = —log(z,fzf = ),

J=

I LR SN NN BN

1

Image

GoogleNet Outputs Quantization

Fig. 2. The architecture of prediction.

a commonly used softmax loss function for classification
is utilized for training with discrete class label information
of individual image. Due to the fact that one image may
associate with many labels, the label of each training image is
represented to a vector Y € {0, 1}¢, where ¢ is the number of
classes, if the image belongs to i-th class, ¥; = 1; otherwise,
Y; = 0. Secondly, aforementioned pairwise loss function is
also the optimization objective of this layer as defined in
Eqn. 2. The similarity of pairwise images can be defined as:

. 1 labely = label, ©)
|0 iabel; # 1abels,
S = label; & labely, (10)

If each image is associated with a single label, S can be
computed with Eqn. 9, otherwise bitwise AND operators of
pairwise labels are executed as Eqn. 10 shown.

With above devised double restrictions, SDHP+ enforces
the learned binary codes to achieve better search accuracy.

D. Hash Coding for New Images

After the training process of the network is completed,
it can be used to generate a g-bit binary code for a new
input image. As shown in Fig. 2, an image is firstly input
into the network and encoded into a g-dimensional real-valued
feature vector v. We only utilize the g outputs of SDHP,
and c outputs of SDHP+ are only used for training. Then a
g-bit binary code can be obtained by a simple quantization
step b = sign(v) for the outputs of the network as mentioned
before.

IV. EXPERIMENTS AND RESULTS
A. Datasets and Evaluation Protocols

The experiments are conducted on two commonly used
public benchmark image datasets CIFAR-10 and NUS-WIDE.
These two datasets are more closely to natural scenes, includ-
ing various targets and scenes might appear in the driving
environment.

o CIFAR-10 [45] consists of 60,000 32x32 color images
which are categorized into 10 classes, and each class
contains 6,000 images. It is a single-label dataset in which
each image belongs to one of the ten classes. The dataset
is split into training set and test set, with 50,000 and
10,000 images respectively. For conventional hashing
methods, 512-D GIST descriptors is utilized to represent
images, following [34]. For our method, the raw images
are used as the input of the framework.
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TABLE I

MEAN AVERAGE PRECISION (MAP) ON CIFAR-10. * REPRESENTS
CITED FROM THE ORIGINAL PAPERS

Method 12 bits | 24 bits | 36 bits | 48 bits
SDHP 0.8318 | 0.8684 | 0.8755 | 0.8767
LSH 0.1217 | 0.1218 | 0.1434 | 0.1417
PCAH 0.1311 | 0.1290 | 0.1255 | 0.1235
SH 0.1268 | 0.1242 | 0.1238 | 0.1282
ITQ 0.1548 | 0.1649 | 0.1668 | 0.1684
DSH 0.1454 | 0.1567 | 0.1589 | 0.1652
SDH 0.4054 | 0.5139 | 0.5347 | 0.5377
COSDISH | 0.4804 | 0.5118 | 0.5413 | 0.5493
CNNH* 0.4650 | 0.5210 - 0.5320
DNNH* 0.5520 | 0.5660 - 0.5810
DSH* 0.6157 | 0.6512 | 0.6607 | 0.6755

« NUS-WIDE [46] is web image dataset. The dataset
includes nearly 270,000 images. It is a multi-label dataset.
Each image of the dataset is associated with at least
one class label from 81 semantic concepts. We follow
the setting in [47] to use the images associated with
the 21 most frequent labels, and each label includes at
least 5,000 images. The total of the images is 195,834.
10,000 images are randomly chosen as test set, and the
rest are used as training set. For conventional methods,
the provided 225-D block-wise color moments low-level
feature is utilized as the input.

In the experiments, for CIFAR-10, if two images have the same
label, they are considered to be semantically similar to each
other, and vice versa. For NUS-WIDE, due to the multi-label
property, it is defined that if two images share at least one
label, they are considered semantically similar, and otherwise
they are dissimilar.

The proposed method is implemented on Caffe [48] frame-
work with a single Tesla K20c GPU (5GB memory), and com-
pared with several state-of-the-art conventional algorithms,
include LSH, PCAH, SH, ITQ, DSH, COSDISH, SDH. The
results of these baseline methods are obtained by the open-
source implementation provided by their authors. We also
compare the method with several deep hashing algorithms,
include CNNH, DNNH and DSH. Since the implementation
of these methods are not available and our experimental setup
is similar to them for the datasets, we use the numbers reported
in the original paper for reference [34], [35], [39].

The retrieval quality are evaluated based on four evaluation
metrics: (1) the Mean Average Precision (MAP), (2) precision
of the top 1,000 returned images using Hamming ranking,
(3) precision-recall curve using Hamming ranking, (4) preci-
sion within Hamming radius 2.

In all experiments, the network is trained by stochastic
gradient descent with 0.9 momentum, the mini-batch size of
images is 50 and the weight decay parameter is 0.004.

B. Results on CIFAR-10

Table I lists the Mean Average Precision with different
binary code lengths. As shown in Table I, we can observe
that the proposed method achieves better search accuracy than
the baseline algorithms. For example, compared to the second
best competitor DSH* which also uses pairwise images as
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Fig. 3. Precision curve with regard to top-n with different bits on CIFAR-10.
(a) 12 bits. (b) 24 bits. (c) 36 bits. (d) 48 bits.

TABLE II

PRECISION OF THE ToP 1,000 RETURNED IMAGES
USING HAMMING RANKING ON CIFAR-10

Method 12 bits | 24 bits | 36 bits | 48 bits
SDHP 0.8272 | 0.8645 | 0.8724 | 0.8748
LSH 0.1480 | 0.1579 | 0.1992 | 0.1994
PCAH 0.1833 | 0.1863 | 0.1818 | 0.1784
SH 0.1784 | 0.1852 | 0.1842 | 0.1925
ITQ 0.2123 | 0.2400 | 0.2458 | 0.2523
DSH 0.1946 | 0.2110 | 0.2165 | 0.2317
SDH 0.3967 | 0.5079 | 0.5311 | 0.5363
COSDISH | 0.4775 | 0.5082 | 0.5382 | 0.5463

inputs, the MAP results of SDHP increase 20.12% ~ 21.72%.
Table II presents the precision of the top 1,000 returned images
using Hamming ranking on CIFAR-10. The precisions of the
top 1,000 returned images using Hamming ranking are above
82%, 86%, 87%, 87% with 12 bits, 24 bits, 36 bits, 48 bits
respectively. The results demonstrate that SDHP has better
performance even with short code lengths, and the precision
is far beyond the conventional algorithms.

As Fig. 3 exhibits, the precision with different code lengths
with regard to different number of top returned samples using
Hamming ranking are above 80% approximately, and the
precision with 48 bits are more than 87%. Compared to the
best conventional hashing method, the precision increases by
about 30%. As fig. 4 displays, SDHP generally outperforms
all comparison methods by large margins in the metrics of
precision-recall curves using Hamming ranking with different
bits.

Fig. 5 (a) shows the precision within Hamming radius 2 on
CIFAR-10. The retrieval performance using Hamming ranking
within Hamming radius 2 is important for retrieval with binary
codes, because such Hamming ranking only requires constant
time cost. As shown in the figure, our method achieves higher
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TABLE III

MEAN AVERAGE PRECISION (MAP) oN NUS-WIDE.
* REPRESENTS CITED FROM THE ORIGINAL PAPERS

Method 12 bits | 24 bits | 36 bits | 48 bits
SDHP 0.7507 | 0.7720 | 0.7758 | 0.7748
LSH 0.3326 | 0.3386 | 0.3552 | 0.3469
PCAH 0.3523 | 0.3448 | 0.3412 | 0.3386
SH 0.3468 | 0.3447 | 0.3400 | 0.3374
ITQ 0.3525 | 0.3560 | 0.3575 | 0.3580
DSH 0.3461 | 0.3543 | 0.3543 | 0.3511
SDH 0.4185 | 0.4002 | 0.4396 | 0.4405
COSDISH | 0.6398 | 0.6575 | 0.6772 | 0.7136
CNNH* 0.6230 | 0.6300 - 0.6250
DNNH* 0.6740 | 0.6970 - 0.7150
DSH* 0.5483 | 0.5513 | 0.5582 | 0.5621

precision than other algorithms with 12 bits, 24 bits, 36 bits,
and the precisions are over 90% with 24 bits, 36 bits, 48 bits.

C. Results on NUS-WIDE

Table III lists the Mean Average Precision with different
binary code lengths on NUS-WIDE. It is obviously that the
performance of SDHP is also better than other approaches
on NUS-WIDE. The MAP of the proposed method can reach
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about 77.58% with 36 bits. Compared to the second best com-
petitor DNNH¥*, the MAP increase 5.98% ~ 7.67%. The MAP
results illustrate that our method can achieve better search
accuracy than the baseline algorithms as well as CIFAR-10.
Table IV shows the precision of the top 1,000 returned images
using Hamming ranking are above 74% with 12 bits and 77%
with 24 bits, 36 bits, 48 bits respectively on NUS-WIDE.
Fig. 6 presents that the precision with regard to different
number of top returned samples are approximately 77%.
Compared to the best conventional hashing method, the pre-
cision increases by approximately 14%. Fig. 5 (b) exhibits
the precision within Hamming radius 2 on NUS-WIDE.
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TABLE IV

PRECISION OF THE TOP 1,000 RETURNED IMAGES
USING HAMMING RANKING ON NUS-WIDE

Method 12 bits | 24 bits | 36 bits | 48 bits
SDHP 0.7477 | 0.7705 | 0.7715 | 0.7723
LSH 0.3497 | 0.3760 | 0.3986 | 0.3957
PCAH 0.4118 | 0.4047 | 0.4008 | 0.3949
SH 0.3788 | 0.3836 | 0.3754 | 0.3689
ITQ 0.4193 | 0.4227 | 04277 | 0.4274
DSH 0.4106 | 0.4205 | 0.4276 | 0.4292
SDH 0.4073 | 0.3907 | 0.4299 | 0.4292
COSDISH | 0.6000 | 0.6250 | 0.6401 | 0.6773

The proposed method achieves higher precision than oth-
ers with 12 bits, 24 bits, 36 bits, and the precisions are
approximately 90%. As fig. 7 shows the precision-recall
curves using Hamming ranking with different code lengths,
it can be seen that SDHP also achieves better search
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Fig. 10. Precision-recall curves of Hamming ranking with regard to different
number of bits on CIFAR-10. (a) 12 bits. (b) 24 bits. (c) 36 bits. (d) 48 bits.

accuracy and outperforms all baseline methods by large mar-
gins on NUS-WIDE.

The substantial superior performance demonstrates that the
deeper architecture can learn a good image representation as
well as hash functions and the proposed loss functions can
encourage to obtain the high-quality binary codes for image
retrieval.

D. Compare With Conventional Hashing Methods
Using CNN Features

In general, the hashing method based on deep learning
outperforms the conventional hashing algorithms with hand-
crafted features. In order to verify the performance of the
learned hashing functions by SDHP, the experimental compar-
isons are conducted between SDHP and conventional hashing
algorithms regardless of the effect of CNN features. These
approaches are trained with CNN features instead of hand-
crafted features. We extract the features from the original
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TABLE V
MEAN AVERAGE PRECISION (MAP) ON CNN FEATURES OF CIFAR-10

Method 12 bits | 24 bits | 36 bits | 48 bits
SDHP 0.8318 | 0.8684 | 0.8755 | 0.8767
LSH 0.2300 | 0.2868 | 0.3412 | 0.3667
PCAH 0.2773 | 0.2174 | 0.1926 | 0.1795
SH 0.2514 | 0.2413 | 0.2293 | 0.2196
ITQ 0.4955 | 0.5177 | 0.5213 | 0.5289
DSH 0.3420 | 0.3056 | 0.3306 | 0.3561
SDH 0.7711 | 0.7964 | 0.8011 | 0.8021
COSDISH | 0.8037 | 0.8155 | 0.8270 | 0.8304
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Fig. 11. Precision curves with regard to top-n with different bits on
NUS-WIDE. (a) 12 bits. (b) 24 bits. (c) 36 bits. (d) 48 bits.

Number of returned images

outputs of the fine-tuned GoogLeNet on CIFAR-10, which are
1,000-dimensional feature vectors. The results of all hashing
methods with CNN features are listed in table V and fig. 8.
As listed in table V, the MAP of conventional hashing methods
achieve better search accuracy than the results on hand-crafted
features, due to the increased dimension of features and the
learning power of CNN. However, as we can see, SDHP
still outperforms conventional hashing algorithms, the MAP
exceeds the second competitor approximately 5%.

Fig. 8 shows (a) precision curves with regard to different
number of top returned samples using 48-bit binary codes,
(b) precision-recall curves of Hamming ranking with 48 bits
and (c) precision within Hamming radius 2. It demonstrates
that our method performs well in spite of the utilization of
CNN features to conventional hashing algorithms. Although
the performance of the baseline methods with CNN features
improve a lot, it is obviously that the total time cost of both
feature extraction and hashing quantization increase as well.

E. Results on SDHP+

In order to verify the performance of SDHP+-, the exper-
imental comparisons are conducted between SDHP-+ and
SDHP. The evaluation metrics are the same as above exper-
iments. Table VI lists the MAP of SDHP+ and SDHP with
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Fig. 12. Precision-recall curves of Hamming ranking with regard to different
number of bits on NUS-WIDE. (a) 12 bits. (b) 24 bits. (c) 36 bits. (d) 48 bits.

o 1.00 o 1.00
E 3
20.95 20.95
o S
5090 0.90
£ <
£ 0.851 €085
& g
S 0804 S 0801
£ 075 £075
=070 = SDHP+ o —=— SDHP+
5 —4+— SDHP IS —— SDHP
% 0.654 B 0.65
& 8 .60
2 0.60 , , 2, . ;
a2 24 36 48 O 24 36 48
Binary code length Binary code length
(a) (b)
Fig. 13. Precision within Hamming radius 2 on (a) CIFAR-10 and

(b) NUS-WIDE.

TABLE VI
MEAN AVERAGE PRECISION (MAP) oON CIFAR-10

Method 12 bits | 24 bits | 36 bits | 48 bits
SDHP+ | 09116 | 0.9151 | 0.9178 | 0.9002
SDHP 0.8318 | 0.8684 | 0.8755 | 0.8767

different code lengths, which presents the map of SDHP-+
exceeding SDHP with 12 bits more than 7.9%.

Fig. 9 shows the precision curves with regard to top-n on
CIFAR-10, it can be seen that the precision curve of SDHP+
is above SDHP by a large margin. As listed in table VII,
the precision of the top 1,000 returned images exceeds SDHP
more than 8% with 12 bits. Fig. 10 presents the precision-
recall curves of Hamming ranking with different code lengths.
SDHP+ also outperforms SDHP by relatively large margins
using Hamming ranking with 12, 24, 36 bits.

The same comparisons are also conducted on NUS-WIDE.
As listed in table VIII, the MAP of SDHP+ exceeds SDHP
2.05% with 12 bits, and the MAP of SDHP+ is above
81% with 48 bits. Fig. 11 presents the precision curves
with regard to top-n with different bits on NUS-WIDE, it is
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Fig. 14. Retrieval results on CIFAR-10 (left) and NUS-WIDE (right). Ten images are randomly selected from the returned set for ten CIFAR-10 test images
using Hamming ranking on 12-bit hash codes and five images are randomly selected from the returned set for five NUS-WIDE test images using Hamming

ranking on 48-bit hash codes.

TABLE VII

PRECISION OF THE ToP 1,000 RETURNED IMAGES
USING HAMMING RANKING ON CIFAR-10

TABLE X

ENCODING TIME (IN SECOND) OF DIFFERENT HASHING
METHODS ON THE CIFAR-10 DATASET USING 48 BITS

Method | 12 bits | 24 bits | 36 bits | 48 bits

SDHP+ | 0.9080 | 0.9100 | 0.9135 | 0.8918

SDHP 0.8272 | 0.8645 | 0.8724 | 0.8748
TABLE VIII

MEAN AVERAGE PRECISION (MAP) ON NUS-WIDE

Method | 12 bits | 24 bits | 36 bits | 48 bits

SDHP+ | 0.7712 | 0.7919 | 0.7953 | 0.8108

SDHP 0.7507 | 0.7720 | 0.7758 | 0.7748
TABLE IX

PRECISION OF THE TOP 1,000 RETURNED IMAGES
USING HAMMING RANKING ON NUS-WIDE

Method | 12 bits | 24 bits | 36 bits | 48 bits
SDHP+ | 0.7719 | 0.7886 | 0.7915 | 0.8066
SDHP 0.7477 | 0.7705 | 0.7715 | 0.7723

Method Encoding time
LSH 2.82e-6
PCAH 3.28e-6
SH 2.37e-5
ITQ 7.99¢-6
DSH 2.68e-6
SDH 2.17e-2
COSDISH 1.87e-3
SDHP+ 9.83e-3
CNN features 9.8%¢-3

obvious that the precision of SDHP+ is higher than SDHP.
Table IX presents the precision of the top 1,000 returned
images exceeds SDHP approximately 2% with 12, 24, 36 bits.
As fig. 12 shows, the precision-recall curves of Hamming
ranking with regard to different code lengths of SDHP+ are
close to SDHP, but it still can be seen that SDHP+- is slightly
superior to SDHP. Fig. 13 (a) (b) displays the precision within
Hamming radius 2 on CIFAR-10 and NUS-WIDE respectively,
the precision reaching to 96% with 36 bits on CIFAR-10 and
91% with 48 bits on NUS-WIDE.

It demonstrates that the idea of SDHP+- is effective, and
it is obvious that the performance of SDHP+ is better than
SDHP even with less bits.

Fig. 14 presents the retrieval results on CIFAR-10 and
NUS-WIDE. For CIFAR-10, ten query images are randomly

selected from the test set, and 12-bit binary codes are extracted
for retrieval. The images which have the same binary codes
with the query are added into the returned set, and then ten
images from the returned set of each query are randomly chose
to display. For NUS-WIDE, we choose five test images as
the query images with 48-bit binary codes, and five returned
images of each query are randomly selected. It is verified
that our method can achieve satisfactory retrieval performance,
and it is supposed to be effective for intelligent vehicles to
recognize the environment.

F. Computational Time

Table X shows the encoding time of different hashing meth-
ods on the CIFAR-10 dataset using 48 bits. The extracting time
of CNN features is also listed. It can be seen that the encoding
time of SDHP+ is closely to the feature extraction time of
GoogLeNet, and the encoding time of our method is lower
than SDH. The proposed method can achieve significantly
better performances compared to these methods while being
scalable with any large-scale training data thanks to the batch
process manner.

G. Evenly Distribution of the Binary Codes

To verify if the distribution of the learned binary codes are
evenly, the experiments are conducted. We count the number
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TABLE XI
EVENLY DISTRIBUTION OF THE BINARY CODES ON CIFAR-10

12 bits
1.0405

24 bits
1.2667

36 bits
1.2619

48 bits
1.2380

of —1 and 1 in a same bin of all binary codes respectively,
and calculate the ratio of them. The results on CIFAR-10 are
shown in table XI.

The results shows the ratio of -1 and 1 is close to 1, which
demonstrates that the loss function is effective to make the
binary codes distribute evenly.

V. CONCLUSION

In this paper, a simple yet effective supervised one-stage
deep hashing framework is elaborated designed to obtain more
discriminative binary codes and achieve promising retrieval
performance for intelligent vehicles to recognize the environ-
ment. The contributions of the proposed method mainly focus
on four aspects: first, we choose a deeper network as the basic
structure due to its impressive feature representation power
and the original network structure is changed to adapt to hash
task. Second, pairwise supervised information is utilized and a
pairwise loss function is devised to preserve the semantic sim-
ilarities of the original data meanwhile. Third, the quantization
error from Euclidean space to Hamming space is minimized
and the binary codes are enforced to be evenly distributed
to carry more information. Fourth, the performance is fur-
ther improved by integrating more supervised information.
Extensive experimental results on two benchmark databases
demonstrate that our method outperforms many state-of-the-art
algorithms, and it is supposed to be effective for environment
perception of intelligent vehicles.
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