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ABSTRACT

Hyperspectral imaging is a hot topic nowadays. It is an ur-
gent problem to be solved how to achieve swift hyperspectral
imaging. In this thesis, our primary purpose is to further
optimize how to place a mask in front of a sensor in or-
der to achieve compressed Hyperspectral imaging. We apply
optimized projection matrix, matrix differential, projection
analysis and other related knowledge to optimizing this re-
alistic matter. After we simply introduce the background of
hyperspectral imaging, we will firstly present the basic princi-
ple of compressed hyperspectral imaging based on mask, and
then mainly analyze the way to achieve projection matrix
optimizing algorithm and the challenges these sort of realistic
problems face. Finally, we compare the experiment results
of these two methods, and the rebuilding results before and
after the optimizing.
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1 INTRODUCTION

With the increasing requirement of the hyperspectral da-
ta in various applications such as remote sensing[19] and
computer vision[4, 7, 12, 15, 17], lots of high-speed hyper-
spectral imaging techniques have been proposed during the
past decades. The primary job of hyperspectral imaging is
to efficiently collect and acquire a 3D data cube transformed
from 2D space and 1D spectral transformation. To achieve
this objective, conventional methods record the data through
mechanical scanning along spatial dimension[1] and spectral
dimension[18], respectively. Snapshot hyperspectral imaging
collects the whole 3D data through a single image, which
has a significant advantage over scanning-based methods for
dynamic scene or aerial photography. Conventional snapshot
hyperspectral methods multiplex high-dimensional signals
separately into a 2D sensor. Therefore, the total pixel number
of the 3D data cube is sacrificed. Four-dimensional imaging
spectrometer (4DIS) [6] and computed tomography imaging
spectrometer (CTIS) [9] are two typical examples. Recently,
coded aperture snapshot spectrometer (CASSI) [8] applies
compressive sensing to encode the 3D data cube into a 2D
image and reconstructs with the prior of the data sparsi-
ty. This computational method overcomes the compromise
between the spatial resolution and spectral resolution with
a much higher light efficiency. CASSI system uses different
fixed coded masks. Another more flexible choice is to ap-
ply digital mirror device (DMD) to change the modulation
pattern[10]. And different kinds of coding frameworks[11, 16]
are then proposed to increase the reconstruction performance
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Figure 1: Schematic of the spatial-spectral encoded compressive hyperspectral imaging.

and acquisition speed. In the mean time, many works have
shown that the optimization of the coding pattern will greatly
improve the restoration performance[13]. However, all these
compressed spectral imaging methods use random mask or
empirically chosen masks for modulation and very few quan-
titative analysis is provided for the influence of the mask. In
this paper, on the basis of a typical compressive hyperspectral
imaging technique[10], we exploit the effect of the mask with
matrix analysis and projection optimization and try to opti-
mize the mask for better compressive reconstruction, which
may also be applied to other high-dimensional multimedia
acquisition framework and inspire more applications. Simula-
tion results on the public hyperspectral dataset[3] prove that
the performance can be enhanced with the optimized mask.

2 MATHEMATICAL MODEL

We used the compressive hyperspectral imaging setup as
depicted in Fig. 1[10]. Fig. 1 shows the schematic of the
system. A diffraction grating was placed at the first image
plane to disperse the spectral information into different angles,
mapping the spectral information of the scene into angular
dimension. Then we placed a mask in front of the image plane
and relayed the coded image plane to a sensor for detection.
Based on the derivation of geometrical optics, each spectral
band of the image corresponds to a specific different coding
pattern. Due to the different angles of the spectral band, the
coding pattern for different spectrums has a translational
shift. The optimized mask is shown in Fig.1, the mask is not
binarized, but has a gradual transmittance.

A mathematical model can be established for the imaging
process. The coded image i on the sensor can be represented
as:

h(z,y, \)dA (1)

Qx

i(xv y) =

where, h here represents for the 3D hyperspectral data we
want to retrieve, and x,y corresponds to the spatial domain

and A\ corresponds to the spectral domain. The shift of the
pattern related to the distance between the mask and the
sensor is represented by s.

One can easily recognize that the shape of an object is very
similar in different spectral bands while their reflectance may
be different. This kind of sparsity can be further exploited
by learning an over-complete dictionary[14] based on a large
hyperspectral dataset. By employing KSVD method, we ob-
tain the over-complete dictionary on which the hyperspectral
information can be represented by several bases, as shown
below:

q
h=Da=Ydja, (2)
i=1

The a here meets the sparse constraint and the D here
means the over complete dictionary. Then we can further solve
the optimizing problem as the later formula to reconstruct
the encoded hyperspectral data

li = ®Dall3 < e 3)

Here ® corresponds to the projection matrix, as illustrated
by formula 2. Our projection matrix P is then presented as
formula 5:

mine||all1 s.t.

P=3®D (4)

As we can see the projection matrix above largely depends
on mask pattern and the over-complete dictionary. It indicates
that different over-complete dictionaries may have different
performance with the fixed mask pattern. And a bad mask
pattern may make the projection matrix ill-posed and lose the
robustness of noise. Though the dimension of the projection
matrix is large, the unknown parameters are very limited,
which is equal to the size of the mask. For reconstruction
process, we usually do it in a patch by patch mode, which is
more suitable for parallel computing. To make the masks we
designed accessible for the reconstruction, the pattern itself
should be periodical. Then we do not need to optimize the
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Table 1: Quantitative evaluation of the performance enhancement with an optimized mask

Image Set Optimization Method MSE HS Image PSNR(dB) Main Angle Error(MAE)
’Chair’ Data Random mask 8.758 38.707 3.321°
Optimized mask 7.687 39.273 3.181°
’Door’ Data Random mask 62.488 30.173 7.846°
Optimized mask 51.051 31.051 7.672°
0.80 concrete optimization. Due to the Gram matrix is symmetric
\ indefinite, we can not use the cholesky decomposition. Here
0.78 1 we use the singular value decomposition (SVD) to get the
\ approximate results. We applied gradient-descent algorithm
0.76 1| to solve formula |S; — PD| |; The gradient of this formula
\ can be calculated as:
o] df (z) T T
He - = —2DSq+2DD" P (5)
072} ar
| The solving process of the gradient-descent algorithm as
0.70 L ‘. follows: Step 0: To determine the initial point
L ) Step 1: Az = — v f(=x)
068t N TN e e Step 2: linear searching, by using the backtracking line search
R T method to determine the step length ¢.
0.66 : : : . : . : . Step 3: x =z + Ax.
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Figure 2: The optimized result of gradient-descent
algorithm.

whole mask, but only to aim at a small block for dictionary
training and mask optimization. Inspired by the compressed
sensing methods|[2], when the sample matrix meets a series
of character, including mutual-coherence and finite isometric
properties, the zero-norm problem can be solved through
one-norm optimization. For better reconstruction, we need
to make our projection matrix meet the mutual-coherence
condition. In other words, we need to make the matrix more
irrelative to reconstruct more efficiently.

By using the framework introduced by Elad et al.[5], we
design a mask optimization algorithm for compressive hyper-
spectral imaging. The original method of projection matrix is
an unconstrained optimization, for the application of our spe-
cific issues, the actual system places lots of strong constraints
to the projection matrix. The real unknown variables are
very limited for such a high-dimensional projection matrix.
This kind constraints also brought some problems for our op-
timizing process, so we propose a new algorithm specifically
designed for the compressive hyperspectral imaging.

First, in order to achieve a better reconstruction effect, we
need to make the projection matrix satisfy mutual-coherence
as much as possible.The stronger the mutual-coherence, the
stronger the reconstruction ability. We use a common stan-
dard p: to measure the mutual-coherence of the matrix, and
its detailed representation can be referred to [5].

For our problem, only the diagonal element of the projec-
tion matrix P is nonzero, which makes it different from the

Repeat step 1 to 3 until meet stop criterion.

The convergence curve of the algorithm is shown in Fig. 2.
With the starting point of a random mask, the u; gradual-
ly converges to around 0.68. Then we did some numerical
simulation to compare the results with random mask and
optimized mask.

3 NUMERICAL SIMULATION

Based on the above analysis, we realized the algorithm and
carried on some simulations to verify our method. We first
read the corresponding matrix dictionary. Then the initial
parameters are determined, including the size of required
mask (according to the size of the dictionary), the param-
eters used in the process of linear search, etc. Finally, the
above-mentioned procedures are undertaken to achieve sever-
al simulation results for performance analysis of our method.

The first simulation is to test the convergence speed of
the optimization process using the 1-norm constraint. The p
convergence curve can converge to local optimal solution fast.
In the process of linear search, all the values within the mask
should be constrained between 0 to 1. Even a small change
in each gradient process will lead the algorithm to converge
to a local point and make it difficult for further optimization.

Different from the above optimization algorithm based
on the 1-norm constraint, an improved method can be used
for the fast convergence and a stable optimal value. The
Convergence result of improved method as shown in Fig. 2,in-
stead of using a gradient search in all dimensions after each
contraction G, the improved gradient-descent algorithm just
need to select one of the largest each time. Therefore, the u.
curve can converge much faster.

Next, we compared the results of our optimized coding and
the random coding. we only rebuild a certain part of a larger
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Figure 3: The comparison of the reconstruction by
coded mask and the optimized mask on the door
data. (a) are input spatial-spectral encoded sensor
images, where the left is encoded by the random
mask and the right is encoded by the optimized
mask. (b) are reconstruction results, where the left
and the middle images are using the random mask
and the optimized mask, respectively. The right
panel is the ground truth. (c) are the RGB syn-
thesis images with their zoom-ins. The reconstruc-
tion with optimized mask (left panel), with random
mask(middle panel) and the groundtruth(the right
panel) are shown for comparision. Reconstruction re-
sults using our optimized mask provide better accu-
racy (PSNR=30.7dB) than using the random mask
(PSNR=29.5dB) on the ’Door’ data. The spectral
profiles of a certain patch marked by a blue box are
shown in (d). a.u., arbitary units.

image for a proof of concept. The reconstruction of a whole
image still takes a lot time of computation. Reconstructed
results are shown in Fig. 3 and Fig. 4. Results using the
optimized mask are close to the optimized reconstruction
result in terms of PSNR and reconstruction speed. Although
the image contrast is low, the PSNR of the optimized coding
can reach 30.7361 dB in the dataset of 'Door’ and 37.5139 dB
in the dataset of 'chair’. In comparison, the reconstruction
of the random coding only reaches 29.5332 dB and 36.1903
dB respectively. If we have a good initial guess, the results
are better than the least squares method and the total-least
squares method. In table 1, we evaluated the reconstruction
quality of the dataset ’Chair’ and 'Door’ using MAE, MSE
and PSNR parameters.

4 CONCLUSION

In this paper, we propose a mask optimization algorithm
for the application of compressive hyperspectral imaging.
By the projection optimization framework and the gradient

500 600 700
Wavelength (nm)

Figure 4: The comparison of the reconstruction by
coded mask and the optimized mask on the chair
data. (a) are input spatial-spectral encoded sensor
images, where the left is encoded by the random
mask and the right is by the optimized mask. (b)
are reconstruction results, where the left and the
middle images are respectively using the random
mask and the optimized mask. The right of (b) is the
ground truth. (c) are the RGB synthesis images by
optimized mask (left panel), random mask (middle
panel) and groundtruth (right panel). Reconstruc-
tion results using our optimized mask can apparently
provide better accuracy (PSNR=37.5dB) than using
the random mask (PSNR=36.2dB) on ’Chair’ data.
The spectral profiles of a certain patch using our op-
timized mask and the random mask on ’Chair’ data
are shown in (d). a.u., arbitary units.

descent algorithm, we achieve a reduction and convergence of
the mutual coherence coefficient. The reconstruction quality
using the optimized mask has an obvious improvement from
that using the random mask, in terms of PSNR and MAE.
We believe that our idea of solving practical problems with
constrained projection matrix optimization, can inspire more
multimedia applications.
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