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ABSTRACT

Temporal attention has been widely used in video description to
adaptively focus on important frames. However, most existing meth-
ods based on temporal attention suffer from the problems of recog-
nition error and detail missing, because only coarse frame-level
global features are employed. Inspired by recent successful work
in image description using spatial attention, we propose a spatial-
temporal attention (STAT) method to address such problems. In
particular, first, we take advantage of object-level local features to
address the problem of detail missing. Second, the STAT method
further selects relevant local features by spatial attention and then
attend to important frames by temporal attention to recognize re-
lated semantics. The proposed two-stage attention mechanism can
recognize the salient objects more precisely with high recall and
automatically focus on the most relevant spatial-temporal segments
given the sentence context. Extensive experiments on two well-
known benchmarks suggest that STAT method outperforms the
state-of-the-art methods on MSVD with BLEU4 score 0.511, and
achieves superior BLEU4 score 0.374 on MSR-VTT-10K. Compared
to the method without local features, the relative improvements
derived from our STAT method are 10.1% and 0.8% respectively on
two benchmarks. Compared to the method using only temporal at-
tention, the relative improvements derived from our STAT method
are 18.3% and 9.0% respectively on two benchmarks.
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1 INTRODUCTION

Recently, automatic video description has received increasing at-
tention in the fields of multimedia, computer vision and natural
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Ground truth: A man is cutting a tree.
TAT: A man is cutting a head.
STAT: A man is cutting a tree.

ARE'S

Ground truth: A man is calling.
TAT: A man is talking.
STAT: A man is talking on the phone.

Figure 1: Illustration of problems of the detail missing (bot-
tom: missing ‘phone’) and misrecognition (top: misrecogniz-
ing ‘tree’ as ‘head’), where TAT and STAT are short for tem-
poral attention and spatial-temporal attention.

language processing, because it enables a variety of practical ap-
plications. For example, it helps users of video sites to retrieve
video efficiently, and benefits visually impaired people to better
understand the video contents.

Compared to image captioning, describing videos is more chal-
lenging because the videos are composed of consecutive frames,
involving both static objects and dynamic human actions. A typi-
cally video clip lasts 5 to 10 seconds, containing 120 to 240 frames.
Though videos contain such vast quantity of information, people
do not describe everything in videos, and it is hard to determine the
most relevant objects and describe the event appropriately. There-
fore, a description generation model should be clever enough to
attend to the most relevant part of the videos.

Regarding the difficulty of these problems, visual attention mech-
anism [8, 14, 37, 39] has been proposed recently to selectively fo-
cus on part of the information in the video. To the best of our
knowledge, most of existing temporal attention-based methods
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only utilize coarse frame-level global features. As a video contains
complex interactions of humans and objects, there are always mul-
tiple salient objects in single frame. Though the important frames
are selectively focused using temporal attention, it is still hard to
attend to multiple meaningful objects on each frame, which will
lead to detail missing in video description. Taking the temporal
attention result in the bottom of Figure 1 as an example, the local
detail ‘phone’ is missing. In addition, frame-level global features
are extracted at a coarse level, which are incapable of representing
and localizing small objects. Therefore, using global features alone
will result in recognition error of small objects during the process
of description generation. Taking the temporal attention result in
the top of Figure 1 as an example, the local detail ‘tree’ is wrongly
recognized as ‘head’.

There have been a few attempts to capture multiple objects
information in video description. Shetty et al. [21] introduced object-
level local features extracted by pre-trained SVM classifier and
integrated these features into global features. These local features
from each frame, are then collapsed via simple average or maximum
pooling to result in a single vector representation of each frame.
However, the indiscriminative average or maximum pooling of all
the objects ignores the important differences among local features.
It is also worth pointing out that Yu et al. [39] considered using
spatial-temporal attention for video captioning. There are several
important differences between our work and [39]. Firstly, in [39]
local features have fixed resolution (220 X 220) and are extracted at
pre-defined spatial locations. We argue that their detection method
is likely to cause false judgment on the objects. Secondly, they do
not differentiate the order between spatial and temporal attention.
When human describe a video, they always first focus on specific
objects on the frame, and then study the interaction between objects
over time. Therefore, we argue that it is reasonable to first calculate
spatial attention weights for local features and then compute the
temporal attention weights for frames. Thirdly, [39] only uses local
features instead of global features, which will overlook the context
information.

To address the above issues, in this paper, first, we take advantage
of local features extracted by Faster R-CNN [19] to address the
problem of detail missing. Faster R-CNN can generate variable-size
bounding boxes according to the actual size of objects, and detects
multiple objects more accurately. Second, we introduce a spatial-
temporal attention (STAT) method to selectively attend to not only
specific subset of frames, but also salient objects in that subset.

In summary, we make the following contributions:

e We study of the importance of using local feature in video
description, and improve the recognition and localization
of multiple small objects on video frames. In addtion, we
discover that the introducing of local feature will make the
temporal attention insufficient, because temporal attention
alone is hard to distinguish multiple salient objects on one
frame, thus generating worse descriptions.

e We propose a spatial-temporal attention (STAT) method
for video description. By assigning different weights to the
spatial features on each frame and the temporal features
on consecutive frames, the STAT method is able to capture
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the key details while keeping the global and motion infor-
mation in the video, thus it can address the problems of
recognition error and detail missing.

Extensive experiments conducted on two well-known video
description benchmarks, MSVD and MSR-VTT-10K demon-
strate that our STAT method achieves noticeable gains by
appropriately integrating spatial attention into temporal
attention.

2 RELATED WORK

Video/Image captioning: In the image captioning work, [3, 9, 10,
13, 29] first try to use RNN for visual text translation. In the task
of image captioning, the input is a single image without temporal
structure, and the output is a natural language description. Thus,
the overall structure of an image captioner (instance-to-sequence)
is also usually simpler than that of a video captioner (sequence-
to-sequence) [11]. Inspired by the successful application of RNN
in image captioning, Venugopalan et al. [28] has applied neural
approach to video description. However, a main shortcoming of this
method is that this representation completely ignores the ordering
of the video frames and fails to utilize any temporal structure [27].
To solve this problem, Yao et al. [37] proposed to exploit global
temporal structure which lets the decoder selectively focus on only
a small subset of frames at a time. Our STAT method is closely
related to [37], because we also mainly use attention mechanism to
selectively focus on video features. However, an obvious difference
is that our attention model to selectively attend to not only specific
subset of frames, but also specific objects in that subset.

Attention mechanism in image/video captioning: Atten-
tion mechanism has been widely used in captioning tasks [12, 25, 31,
36-38, 43]. On one hand, the tasks of image captioning mainly ex-
ploit spatial attention mechanism. Taking Xu et al. [31] for instance,
they explored two attention-based image caption approaches, which
are able to generate a target word according to the most relevant
regions in an image. On the other hand, the tasks of video cap-
tioning mainly utilize temporal attention mechanism. For example,
Yao et al. [37] first introduced a temporal attention mechanism to
exploit global temporal structure, which is able to generate a target
word based on the most relevant frames in a video. As we know,
the tasks of video captioning not only have a temporal structure on
the consecutive frames, but also a spatial structure on each frame.
Therefore, Yu et al. [39] has explored both spatial attention and tem-
poral attention to capture quite small and difficult to be localized
objects. However, when they caculated attention weights of all the
patch features, they ignored the order between spatial and temporal
attention. In contrast, we believe that the order is important due
to the visual attention mechanism of human beings. Therefore, we
argue that a clever decoder first should focus on salient objects on
each frame by spatial attention, and then selects relevant frames on
consecutive frames by temporal attention. Compared to the above
methods, our STAT method is built upon attention and extends it
one step further, which is able to generate a target word based on
both spatial attention and temporal attention while considering the
order between two attentions.

The use of object-level local features in video captioning;:
As we know, the videos contain more types of features than images,
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Figure 2: The video description based on spatial-temporal attention (STAT) is displayed. STAT is mainly composed of two parts:
spatial attention (SA) and temporal attention (TA), the detailed STAT unit will be shown in Figure 4.

such as appearance features, motion features. However, most exist-
ing work in video captioning mainly use frame-level appearance
features. Shetty et al. [21] utilized pre-trained SVM classifier and
integrated these features into global features. However, they only
adopted simple averaging strategy to deal with these local features.
This approach risks ignoring the spatial structure underlying each
frame. For instance, it is not possible to tell the importance between
two objects from the collapsed features. Yu et al. [39] utilized optical
flow to roughly detect and extract patch features on each frame and
pooled all the patch features together. However, rough detection
is likely to cause false judgment on the objects. In addition, they
only used patch features which will overlook context information.
Hence, we exploit pre-trained Faster R-CNN model [19] that de-
tects objects more accurately, and generates variable-size bounding
boxes according to the actual size of objects. At the same time, we
propose a STAT method, which use two type appearance features
such as frame-level global features and object-level local features
simultaneously. Thus, our method can capture more significant
details while keeping global context information.

3 EXPLOITING SPATIAL-TEMPORAL
ATTENTION IN VIDEO DESCRIPTION

In this section, we delve into the main contributions of this paper
and propose a method for exploiting spatial-temporal attention in
video description.

3.1 Overall Framework

We build our video description framework based on the popular
ConvNet + LSTM architecture [15, 17, 22, 29, 38], which consists of
two neural networks: the encoder and decoder as shown in Figure
2. The encoder network is intended for learning a good visual
representation, and the decoder network generates a corresponding
description from the output of the encoder. In the encoder network,
we extract global features vg; and local features vl; from the video
frames while extracting the motion features vm; from the video
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clips. Thus, a video inputted to encoder network can be converted
into a feature set V = {v1, ..., vy }, where each v; = {vg;, vl;,vm;}.
Moreover, we intend to fuse vg; and vm; into v[gm]; in that both
of them reflect context information. In the decoder network, visual
features can be converted into a word sequence Y = {y;, y2, ....Ym },
which describes the video content.

In the image description, all the visual features are encoded into
a single feature vector into the LSTM unit. But for a video, it is
obviously unrealistic to cram the visual information of the whole
video into a single vector. Therefore, we will follow the implemen-
tation of [37] to introduce visual features with the generation of
each target word. It is necessary to add a new visual input part
¢ (V) to the LSTM unit, which is formulated as follows:

ir = o(WiE[ye-1] + Uihi—1 + Aige(V) + bi); (1)
fi = 6(WpElye—1] + Uphi—y + Apgi(V) + by); @)
0r = o(WoE[ye-1] + Uoht—1 + Ao (V) + bo); ®3)
gt = c(WyE[ys-1] + Ught—1 + Ago: (V) + by); (4)

ct =¢t-10 fr +ir Ogr; (5)
ht = ot © ¢cy, (6)

where o is a sigmoid activation function, ¢ is a tanh function, y;—1
is the previous word, h;_; is the previous hidden state, ¢;(V) is
the encoder representation. E is a word embedding matrix, and
we denote by E[y;—1] an embedding vector of word y;_1. Besides,
‘/Vl' (Wo, Wf, Wg), Ui (Uo, Uf> Ug), Ai (AO, Af, Ag) and bi (bo, bf’
by) are, in order, the weight matrices for the input, the previous
hidden state, the context from the encoder and the bias. Finally, the
probability distribution of a series of target words at each time will
be obtained through a single hidden layer:

yr = softmax(Uyp(Wylhs, 0t (V), E[ys-1]]) + by). 7)

where [h;, 9:(V), E[ys—1]] denotes the concatenation of the three
vectors.
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Figure 3: Example detection using Faster R-CNN on a frame of a video (Left: blue dotted wireframe). The process of local

feature extraction (Right: red dotted wireframe).

3.2 Object Detection and local Feature
Extraction

Nowadays, object detection has attracted more and more attention
in the field of compute vision [4, 32-35, 41, 42, 44]. Meanwhile,
extraction of multiple local features vl; is a key component of our
STAT method in both training and testing. In order to detect and
locate multiple objects on video frames, Yu et al. [39] exploited
optical flow to roughly detect and extract n image patches of size
220 X 220 along the lower part of the box border ( c.f Section 2
for details). In addition, Donahue et al. [5] and Rohrbach et al. [20]
designed a specialized hand detector which could accurately detect
and locate multiple objects. However, we find that both of their
methods require a lot of engineering efforts. Inspired by the recent
success of Region Proposal Network (RPN) [19] and Region-based
Convolutional Neural Networks (R-CNNs) [7] in object detection,
we will exploit Faster RCNN model [19] to directly detect multiple
objects from the input video frames.

We use a Faster R-CNN model which takes an image (of any size)
as input and outputs a set of rectangular object proposals, each with
a class confidence score. The higher the score, the more likely there
is an object for a certain class. In order to alleviate unnecessary
computation complexity, we have made some efforts to address it.
First, we reduce the number of proposals, which is the maximum
number bounding boxes for a frame, from 300 (e.g. default setting)
to 100, because it still leads to a competitive result when using the
top-ranked 100 proposals at a test-time [19]. In effect, the average
number of proposals is smaller after NMS. Besides, considering that
there is little change between a subset of frames of a video, we select
28 equally-spaced frames to detect possible objects, thus further
alleviating computation complexity. The Faster R-CNN model is pre-
trained on MS COCO detection dataset and can detect 80 objects.
Compared to the methods [5] and [39], the Faster R-CNN model not
only detects multiple objects more accurately, but also decreases the
detection time largely. Last but not least, it generates variable-size
bounding boxes which is more flexible for object detection.

After detecting objects on each video frame, we select the top-n
objects to represent important local objects according to their class
confidence scores {s1, s2, ..., S }. Then, we represent each object as
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a 4096-dimensional local feature, which is extracted from the fc7
layer of the Faster R-CNN network. Finally, we obtain a set of local
features vl; = {vl;1, ..., vlin} where vl;; € R40% on each frame.
Figure 3 shows results of object detection (blue dotted wireframe)
and local feature extraction (red dotted wireframe) on a frame of
one video in Figure 5.

3.3 Spatial-Temporal Attention

Visual attention is an important mechanism in the visual system of
primates and human beings. It is a feedback process that selectively
maps a representation from the early stages in the visual cortex into
a more central non-topographic representation that contains the
proprieties of only particular regions of objects in the scene [38].
Thus, we exploit visual attention mechanism of human beings to
design a spatial-temporal attention (STAT) method. Our proposed
method enables the decoder to first focus on specific objects on
video frames, and then studies the interaction between objects over
time during the process of video description.

As shown in Figure 4, the input of STAT are composed of global-
motion features, local features and model status information. The
outputs of STAT unit are dynamic visual representation, which feed
each iteration of LSTM decoder. First, we let local features vl; go
through Layer 1 and exploit spatial attention to select semantically
more relevant local features ‘I’lt (VL) to Layer 2; Second, in Layer
2, we utilize temporal attention to generate global-motion tem-
poral representation ¢;(VGM) and local temporal representation
¢@:[¥(VL)] from global-motion features v[gm]; and local features
¥;(VL) respectively; Finally, global-motion temporal representa-
tion and local temporal representation go through Layer 3 and are
concatenated into a new temporal representation ¢;(V) to feed
each iteration of the LSTM decoder.

Spatial Attention: We exploit spatial attention mechanism to
encode the top-n local features vl; = {vlj1, ..., vlin} of each frame
obtained from Section 3.2 into variable-length local features: ¥ (VL) =
{¥1(VL), ..., ¥ (VL)}. Each of the ¥;(VL) is the dynamic weighted
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Figure 4: The STAT unit is shown. Local features, global-
motion features, and model status information are inputted
into STAT, and STAT generates dynamic visual features to
each iteration of the LSTM decoder. Layer 1 indicates that
spatial attention is applied to local features. Layer 2 ex-
presses temporal attention on global-motion features and
local features. Layer 3 represents the new temporal repre-
sentation is fused by two temporal representation.

sum of all the n local features through a spatial attention mecha-
nism:

v = Z o oly, ®)

(®)

landa}

where 2;1:1 a

inside the LSTM decoder. We refer to agjt.) as the spatial attention

&) _ i
ij are computed at each time step ¢

weights at time . The spatial attention weights agjt.) reflect the
relevance of the j-th local features in the input video given all the
previous words, i.e. y1, ..., y;—1. Hence, we design a function that
takes as input from the previous hidden state of the LSTM decoder,
and the j-th local features and returns the unnormalized relevance

(7).,
scores e;;:

A

e =w tanh(Weht 1+ Uevlij + ze),

©

where WIT, We, Uk, z¢ are the parameters to be learned by our model
and shared by all the local features at all the time steps.

Once the relevance scores ego for all the local features j = 1, ...,n
are computed, we normalize them through softmax function to

(1),

obtain the a; ij

o) = exp{e“)}/z expiel)}. (10)
In conclusion, the spatial attention mechanism allows the de-
coder to selectively focus on more salient objects by increasing the
attention weights of the corresponding local features.
Temporal Attention: We encode the variable-length global-
motion features V[GM] = {v[gm]y, ..., v[gm] } and local features
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Y(VL) = {¥1(VL),...,¥x(VL)} into a sentence-length temporal
representation ¢(V) = {¢1(V), ..., 9m(V)}. Each ¢4(V) is a concate-
nation of global-motion temporal representation and local temporal
representation:

¢t (V) = {0t (VGM), o [¥(VL)]}, (11)

where ¢;(VGM) is the dynamic weighted sum of all the k global-
motion features, and ¢;[¥(VL)] is the dynamic weighted sum of all
the k local features through an temporal attention mechanism:

k
pe(VGM) = 3" B olgml;;

(12)
i=1
0 [¥(VL)] = Z Y v, (13)
where Zk 1/3([) =1and Zk 1 yl(t) = 1. We compute ,B(t) and y(t)

respectlvely at each time step ¢ inside the LSTM decoder. We refer
to ﬁgt) and ylm as the temporal attention weights at time t.

Similarly, we design two temporal attention functions to calcu-
late unnormalized relevance scores bgt) and cgt), which take the
previous hidden state, the i-th global-motion features and the i-th
local features as inputs:

bgt) = w,{tanh(tht_l + Upvlgm]i + zp); (14)

W = Wl tanh(Wehy_1 + Uei(VL) + 2o), (15)

where wg, Wy, Up, 2z and W,T, We, Ug, z. are shared by all the
global-motion features and local features respectively.
Then, we also normalize them through the softmax function:

k
B = expib”}) > explbl);

i'=1

(16)

k
2. exp{cgt)}/z exp{cg,t)}. (17)
i'=1

Therefore, the temporal attention mechanism allows the decoder
to selectively focus on a subset of frames by increasing the atten-
tion weights of the corresponding global-motion features and local
features. In conclusion, the two proposed attention mechanism are
integrated orderly into an encoder-decoder neural video caption
generator, which can pay more attention to how to predict the
salient objects more precisely with high recall while attending to
semantically more relevant video frames.

4 EXPERIMENT

4.1 Dataset and Evaluation Metrics

Dataset: We conduct the experiments on two video captioning
benchmarks: MSVD [1] and MSR-VTT-10K [30]. The MSVD has
1970 video clips with a variety of human annotated language de-
scriptions. The dataset contains a total of 80839 sentences which
can be divided into 13010 separate words. According to the method
of [37], we spilt a training set of 1200 video clips, a validation set of
100 clips, and a test set consisting of remaining clips. The MSR-VTT-
10K [30] contains 10,000 video clips, which is the most challenging
dataset for video captioning to date. We use the official spilt with
6513 videos for training, 497 for validation and 2990 for testing.
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We report the experimental results on both the validation and test
splits on MSR-VTT-10K.

Evaluation Metrics: Various methods for the evaluation of gen-
erated sentences have been employed, such as BLEU [16], METEOR
[11] and CIDEr [26]. BLEU is the most popular metric for the eval-
uation of machine translation which is only based on the n-gram
precision. METEOR is based on the harmonic mean of unigram
precision and recall with which the recall is weighted higher than
precision. It is designed to fix some of the problems of BLEU metric.
Different with the BLEU metric, the METEOR seeks correlation
at the corpus level. CIDEr is designed for evaluating image de-
scriptions using human consensus. We utilize the Microsoft COCO
evaluation server [2] to obtain all the results in this paper, which
makes our results directly comparable with the previous work.

4.2 Implementation Details

Features Extraction: For frame-level global features, we adopt
1024-dimension pool5/7 x 7_s1 layer from GoogLeNet [23] and
denote them as VG = {vgj, ..., vgy }. For object-level local features,
we denote them as VL = {vl, ..., vl }. These local features are
extracted by Faster R-CNN [19] (c.f Section 3.2 for details). In this
paper, we set n to 8 on the MSVD. In order to reduce the amount of
computation and memory consumption, we reduce the number of n
to 5 on the MSR-VTT-10K because the number of object contained
in an image is usually below 10. For motion features, we use the
4096-dimensional fc6 layer from C3D [24] and pre-trained on the
Sports-1M video dataset [9]. On the MSVD, we take continuous
16 frames as the input short clips for the C3D. On the MSR-VTT-
10K, we increase the interval and take continuous 32 frames as
the input short clips for the C3D. The C3D features are denoted as
VM = {vmj,...,umy }. At last, we select 28 equally-spaced frame
global features, local features and clip motion features as visual
inputs.

Model and Training: An overview of our video description
framework is shown in Figure 2. We use one-layer LSTM unit and
set hidden layer size as 1024. The word embedding size is set to 512
and learning rate is set to 2 x 10~% empirically. In training, all video
description generation models are trained end-to-end by minimiz-
ing the penalized negative log-likelihood. Training continued until
the validation log-probability stopped increasing for 6,000 updates.
Then, we use the Adadelta algorithm [40] with the gradient com-
puted by the back propagation algorithm, which is widely used for
optimizing attention model to update the parameters. Finally, we
estimate the parameters by maximizing the log-likelihood:

N tm

1
LO) = . D, = logp(w]" Iy, x™.0),

n=1i=1

(18)

where there are N training video-description pairs (x™,y™),and
each description y is t,,, words long.

4.3 Experimental results

Baseline Methods: First, we compare our spatial-temporal atten-
tion method (STAT) with the method using none local features
(TAT-NL). Second, we compare STAT with the method using none
attention (NAT), which adopts simple averaging strategy for all
the features. Finally, we compare STAT with using only temporal
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attention method (TAT), which uses the averaging strategy for local
features.

State-of-the-art Methods: On MSVD, we compare STAT with
five methods: TA [37], LSTM-E [15], h-RNN [39], HRNE [14] and
M-Fusion [8]. TA is the first work exploring temporal attention
in video description. LSTM-E simultaneously explores learning of
LSTM and visual semantic embedding. h-RNN presents an approach
that exploits hierarchical RNNs to tackle the video captioning prob-
lem. HRNE models video temporal information using a hierarchical
recurrent encoder. M-Fusion explores attention model which selec-
tively attends not only specific times, but also specific modalities
of input. Little work have been done on MSR-VTT-10K. We com-
pare STAT with three methods: SA-LSTM [30], C3D+ResD [18]
and v2t_nagvigator [6]. SA-LSTM is the basic method of publica-
tion on MSR-VTT-10K, but it is done on a different split from ours.
C3D+Res studies the fusion of multiple features. v2t_nagvigator on
this dataset has the best results.

Results on MSVD: We report the results on MSVD in Table 1.
Our STAT method achieves the best BLEU and CIDEr scores among
all the methods. BLEU4 has shown good performance for corpus-
level comparisons over which a high number of n-gram matches
exit [2]. For CIDEr, this is a consensus-based metric, which rewards
a sentence for being similar to the majority of human written de-
scriptions. Thus, the description based on our STAT method can be
as accurate as possible on the basis of maintaining human language
habits.

We also compute the relative improvements obtained by STAT
method. Compared to the TAT-NL method, our STAT method ob-
tains 10.1% relative improvements in terms of BLEU4, 2.8% relative
improvements in terms of METEOR, and 8% relative improvements
in terms of CIDEr. The results show that we integrate local features
into global features and motion features indeed improve recognition
and localization multiple small objects on video frames. Compared
to the NAT method, our STAT method obtains 23.1% relative im-
provements in terms of BLEU4, 3.8% relative improvements in terms
of METEOR, and 7.9% relative improvements in terms of CIDEr. In
contrast, compared to the NAT method, although TAT method also
has relative improvements in terms of BLEU, it has shown worse
results in other two metrics. The comparison result from STAT
method and TAT method shows that temporal attention is hard to
distinguish the small objects on video frames. Hence, the spatial
attention is an essential part of the video description method. In
conclusion, we observe that the improvements brought by exploit-
ing spatial and temporal information are complimentary, with the
best performance achieved when both the spatial attention and the
temporal attention are used together.

Results on MSR-VTT-10K: We report the results on MSR-VTT-
10K in Table 2. We find that our STAT method has less improve-
ments over TAT-NL in that this dataset has more objects than MSVD.
Thus, we expect to have even better performance if our number of
object detection is increased. In addition, our STAT method also has
better improvements over NAT method. In contrast, we note that
TAT method has shown worse results in all the evaluation metrics
of Test split. Hence, we further argue that temporal attention hardly
enables decoder to attend to small objects on each frame.
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Table 1: Performance evaluation on MSVD

B@1 B@2 B@3 B@4 | METEOR | CIDEr
TAT-NL (G+C) 0.803 0.676 0.572 0.464 0.318 0.625
NAT (G+C+R-fc7) 0.764 0.627 0.521 0.415 0.315 0.629
TAT (G+C+ R-fc7) 0.773 0.642 0.540 0.432 0.307 0.597
STAT (G+C+ R-fc7) | 0.826 0.714 0.616 0.511 0.327 0.675
TA[37](G+3D CNN) | 0.800 0.647 0.526 0.419 0.296 0.517
LSTM-E[15](V+C) | 0.788 0.660 0.554 0453 | 0.310 -
h-RNN[39](V+C) 0.815 0.704 0.604 0.499 0.326 0.658
HRNE[14](G+C) 0.811 0.686 0.578 0467 | 0.339 -
M-Fusion[8](V+C) | 0.811 0.703 0.607 0499 | 0318 0.634
1 (G=GoogLeNet, C=C3D, R-fc7=Faster R-CNN fc7, V=VGG)
Table 2: Performance evaluation on MSR-VTT-10K
Test split Valid split

B@4 METEOR CIDEr | B@4 METEOR CIDEr
TAT-NL (G+C) 0.371 0.264 0.398 0.379 0.269 0.405
NAT (G+C+R-fc7) 0.348 0.250 0.365 0.347 0.252 0.350
TAT (G+C+ R-fc7) 0.343 0.243 0.319 0.358 0.247 0.316
STAT(G+C+ R-fc7) 0.374 0.266 0.415 0.380 0.271 0.402
v2t_nagvigat0r[6] 0.408 0.282 0.448 0.394 0.275 0.480
C3D+Res[18] - - - 0.385 0.267 0.411
SA-LSTM[30] 0.405 0.299 - - - -

1 (G=GoogLeNet, C=C3D, R-fc7=Faster R-CNN fc7)

In this more challenging dataset, our experimental results are
not satisfactory due to STAT method only outperforms C3D+Res
[18] with METEOR score. As to v2t_nagvigator [6] and SA-LSTM
[30], both of them have higher scores than our method. There are
two likely reasons accounting for the limited improvement on MSR-
VTT-10K corpus. First, the challenging corpus included diverse and
tiny objects may lead to imprecision when detecting objects, so
weakening the strength of spatial attention. Besides, SA-LSTM is
done on a different split from our available data, which makes it
unsuitable for comparison. For v2t_nagvigator, it exploits sentence
re-ranking method which promotes relevant captions by re-scoring
a list of candidate sentences [6]. However, our goal is to improve
the visual encoder, which is quite different from their research. In
conclusion, the attention model in encoder part of video description
is worth further studying.

4.4 Qualitative Analysis

Although the evaluation mechanisms introduced in [2] can reflect
the degree of matching between the descriptions generated by our
STAT method and the reference descriptions by human, the scores
in Table 1 and Table 2 are not straightforward for understanding
of our model. Thus, we visualize the spatial attention weights and
temporal attention weights for some video clips from MSVD and
MSR-VTT-10K, as shown in Figure 5. SA and TA represent the
spatial attention results and temporal attention results in our STAT
method, respectively. We also present the ground truth descriptions,
the descriptions generated by temporal attention (TAT) and the
descriptions generated by spatial-temporal attention (STAT) .
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In Figure 5, we can clearly see that the description generated
using the STAT method is able to capture more details (e.g. ‘paper
airplane’, ‘tv show’, ‘bowl’, ‘bear’) and less misrecognition, because
our model is able to attend to those key evidences. We observe
that our model can not only focus on key frames relating to each
word, but also can focus on some key objects on the frames. For
example, in the video clip No.1, when generating the word ‘boy’, our
model focuses on the first frame through temporal attention. Mean-
while, the discriminative face area of the boy is focused through the
spatial attention. After that, when generating the word ‘dog’, our
model switch attention to the third and fourth frames according to
previous generated words. We also find that using temporal atten-
tion method alone, the ‘dog’ is misrecognized as the ‘baby’. In the
video clip No.4, it is difficult to judge the place where ‘a man and
woman talking’ when using temporal structure alone. In contrast,
our STAT method takes pride in identifying the ‘dog’ accurately,
and successfully recognize the ‘couch’ and other details, because we
incorporate the local features and automatically attend to related
local objects. These examples further confirms that integrating spa-
tial attention into temporal attention to select the object-level local
features are critical in the video description.

5 CONCLUSION

In this paper, we have studied the existing problems of video de-
scription in depth in terms of detail missing and recognition error.
We identify and underscore the importance of order between spa-
tial structure on each frame and temporal structure on consecutive
frames. To this end, we propose a novel video description method
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Ground truth: A boy is playing with a dog. Ground truth: A woman sits on a couch and drinks out of a bottle.
TAT: A boy is playing with a baby. TAT: A woman is drinking.
STAT: A is playing with a dog. STAT: A is drinking on a couch.
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Ground truth: A person making a paper airplane. Ground truth: A man and woman talking about something in media.
TAT: A person is folding a paper. TAT: A man is talking to a woman.
STAT: A is folding a paper airplane. 5 STAT: A and woman taking about a tv show.

6

%2

hlRNEAE -

wola am m wl b ||I A

Ground truth: A woman is adding oil to a bowl of ingredients. Ground truth: A woman is applying makeup to her eyes.
TAT: A man is preparing the food. TAT: A woman is showing how to make a makeup.
STAT: A is adding ingredients to a bowl. 7 STAT: A is applying makeup to her face. 3
‘ SA
™ ol Lo wh ol ™
Il I [ ] I [ I n I I | I
Ground truth: A bear walking in the forest. Ground truth: A man and woman are riding a motorcycle.
TAT: A panda is walking on the ground. TAT: A man is riding a scooter.
STAT: A is walking in the forest. STAT: A and woman are riding on a motorcycle.

Figure 5: Eight sample videos on MSVD and MSR-VTT-10K and their ground truth descriptions, the descriptions generated
by temporal attention (TAT) and the descriptions generated by spatial-temporal attention (STAT). The white aperture area on
each frame represents the change in the degree of importance of each local object in the spatial attention stage. The bar plot
under each frame are the temporal attention weights for this frame when the corresponding word (color-coded) was generated
in the temporal attention stage.

which integrates the local objects information into global and mo- ACKNOWLEDGMENTS
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